Kontinuierliche Extraktion benachbarter Metalle im Durchstrombetrieb – ein disruptiver ökonomischer Ansatz zur In‐situ‐Rohstoffgewinnung auf Asteroiden?

Angewandte Chemie - Tập 133 Số 7 - Trang 3408-3431 - 2021
Volker Hessel1, Nam Nghiep Tran2,1, Sanaz Orandi1, Mahdieh Razi Asrami3,1, Michael Evan Goodsite4, Hung Nguyen5
1School of Chemical Engineering and Advanced Materials, University of Adelaide, Australien
2Department of Chemical Engineering, C, an Tho University, Vietnam
3Department of Applied Chemistry, Bu-Ali Sine University, Hamadan, Iran
4School of Civil, Environmental & Mining Engineering University of Adelaide Australien
5Teletraffic Research Centre, University of Adelaide, Australien

Tóm tắt

Abstract

Um eine In‐situ‐Rohstoffgewinnung (ISRU) auf Asteroiden zu realisieren, muss zunächst das Gewichts/Kosten‐Problem gelöst werden. Dafür wird es nötig sein, von Grund auf neue Technologien zu entwickeln. Basierend auf diesem Ansatz diskutiert dieser Aufsatz, inwiefern chemische Prozessintensivierung bei der Entwicklung disruptiver Technologien und Geschäftsmodelle im Bereich der ISRU helfen kann und inwiefern hiervon auch bestehende “Erd”‐Industrien und Raumfahrt‐Start‐Ups profitieren können. Die betrachtete disruptive Technologie ist die kontinuierliche Lösungsmittel‐basierte Mikroflow‐Extraktion, und als weiteres disruptives Element wird die Verwendung ionischer Flüssigkeiten diskutiert. Bei der untersuchten Weltraumtechnologie handelt es sich um den zukünftigen Asteroidenbergbau, und der Fokus liegt auf dem finalen Schritt: der Aufreinigung der abgebauten und ausgelaugten Metallmischung. Der ökonomische Schlüsselschritt wird definiert als die Reduktion der Menge des beim Asteroidenbergbau verwendeten Wassers. Dieser Aufsatz diskutiert die Effizienz und den Umfang möglicher Wege zur Wassereinsparung bis hin zum technologischen Limit der aktuell effizientesten Erd‐basierten Prozessintensivierungen in diesem Bereich und deren physikalische Limitierungen.

Từ khóa


Tài liệu tham khảo

10.1533/9780857097729.1.13

G. Sanders W. Larson K. Sacksteder C. Mclemore NASA In-Situ Resource Utilization (ISRU) Project: Development and Implementation. In AIAA SPACE 2008 Conference & Exposition2008 Sep 9 S. 7853.

G. B. Sanders Overview of Past Lunar in Situ Resource Utilization (ISRU) Development by NASA NASA Johnson Space Center Houston TX United States 2018.

B. A. Cohen Lunar Flashlight: Mapping Lunar Surface Volatiles Using a CubeSat. In: Proceedings of the 46th Lunar and Planetary Science Conference March 16–20 2015 The Woodlands Texas USA abstract no. 2020.

 

Craig G., 2014, J. South. Afr. Inst. Min. Metall., 114, 1039

Hein A. M., 2019, Acta Astronautica

Schmitt H. H., 2004, Popul. Mech., 12

P. Knights G. Yeates inProceedings of the IEEE International Conference on Industrial Technology Vol. 2019 Institute of Electrical and Electronics Engineers Inc. 2019 S. 27–32.

10.1016/S0140-6736(19)31568-5

10.1038/531435a

 

G. Sanders T. Peters R. Wegeng W. TeGrotenhuis S. Rassat K. Brooks S. Stenkamp in39th Aerospace Sciences Meeting and Exhibit 2001 p. 939;

Wegeng R. S., 2000, Microreaction Technology: Industrial Prospects, 2, 10.1007/978-3-642-59738-1_1

Stankiewicz A., 2019, The Fundamentals of Process Intensification

10.1002/9781119600800.ch1

10.1002/anie.200701434

10.1002/ange.200701434

10.1016/0304-386X(76)90001-3

10.1016/j.cej.2016.08.062

10.1007/978-3-319-54946-0_8

10.1016/S0094-5765(98)00087-3

10.1038/nature03938

10.1016/j.icarus.2006.06.001

 

Reddy V., 2015, Asteroids IV, 43

10.1093/mnras/stx1054

 

K. Zacny M. M. Cohen W. W. James B. Hilscher inAIAA SPACE 2013 Conference and Exposition 2013 S. 5304;

M. Cohen W. W. James K. Zacny J. Craft P. Chu Robotic Asteroid Prospector (RAP) 2018.

 

J. Borovička P. Spurný P. Brown Asteroids IV2015 257;

10.1016/j.icarus.2015.05.004

Taylor T. C., 2008, AIP Conference Proceedings, Bd. 969, 934, 10.1063/1.2845060

10.1016/j.actaastro.2014.10.034

10.2514/1.49851

10.1007/978-3-642-39244-3

10.1016/j.cej.2017.09.046

Bendjoya P., 1993, Astron. Astrophys. Suppl. Ser., 102, 25

J. Sponable DARPA public release statement2016.

10.1016/0265-9646(94)90004-3

10.1038/s41561-019-0345-3

 

10.1073/pnas.1802345115

D. H. Needham M. Siegler S. Li D. Kring 2019.Calculated thicknesses of volcanically derived water ice deposits at the lunar poles. In: 50th Lunar Planet. Sci. Conf. Abstract #1087..

J. Dino LCROSS impact data indicates water on Moon NASA Ames Research Center Mountain View CA 2009.http://www.nasa.gov/mission pages/LCROSS/main/prelim water results.html.

10.1109/JSTARS.2014.2374236

 

C. McLemore J. Fikes K. McCarley J. E. Good S. D. Gilley J. P. Kennedy From Lunar Regolith to Fabricated Parts: Technology Developments and the Utilization of Moon Dirt 2008; besucht am 21. Juli 2019 http://ntrs.nasa.gov/search.jsp?R20080018923;

M. D. Hogue R. P. Mueller L. Sibille P. E. Hintze D. J. Rasky Regolithderived heat shield for planetary body entry and descent system with in-situ fabrication in: Proceedings of the ASCE Earth & Space Conference 2012 S. 526–536.

McKay D. S., 1991, The lunar regolith. In Lunar sourcebook, vol. 7., 285

H. Brown M. Robinson A. Boyd Identifying Resource-Rich Lunar Permanently Shadowed Regions: Table and Maps. inLunar and Planetary Science Conference 2132 2019 1054.

P. D. Spudis “How much water is on the moon?” Air and Space Magazine 2018.

10.1016/j.pss.2018.04.005

10.1186/s40623-017-0617-3

10.1088/0004-6256/141/6/199

10.1029/2018JE005584

10.1016/j.icarus.2011.03.003

10.1146/annurev-earth-042711-105319

S. Graham C. Parkinson M. Chahine The water cycle The Earth Observatory EOS Project Science Office NASA Goddard Space Flight Center 2010.

H. Jones 48th International Conference on Environmental Systems 2018.

10.1016/j.scitotenv.2014.05.014

10.3389/fenrg.2018.00123

M. Flynn NASA Water Recycling Technology Development in NASA Water Recycling Demonstration Project California 2009.

Zubrin R., 2018, The Political Economy of the Space Age: How Science and Technology Shape the Evolution of Human Society, 153

Musk E., 2018, The Political Economy of the Space Age: How Science and Technology Shape the Evolution of Human Society, 121

 

10.1038/nature10399

10.1038/ngeo658

 

10.1093/petrology/egl069

Schouwstra R., 2000, Platinum Met. Rev., 44, 33, 10.1595/003214000X4413339

Herschel W., 1801, Philos. Trans. R. Soc. London, 265

Levskij L., 1979, Meteoritics, 14, 475

A. L. Graps P. Blondel G. Bonin D. Britt S. Centuori M. Delbo L. Drube R. Duffard M. Elvis D. Faber arXiv preprint arXiv:1612.007092016.

10.1038/nature08094

10.1111/1755-6724.14343

10.1007/s002540050272

10.1016/0019-1035(91)90235-L

10.1088/2058-7058/22/08/32

Scott E. R., 2002, Asteroids, 3, 697, 10.2307/j.ctv1v7zdn4.53

S. Harris (2013-04-16).“Your questions answered: asteroid mining”. The Engineer. Besucht am 16.08.2019.https://www.theengineer.co.uk/aerospace/in-depth/your-questions-answered-asteroid-mining/1015966.article.

10.1007/s10569-013-9495-6

J. R. Brophy L. Friedman F. Culick in2012 IEEE Aerospace Conference IEEE 2012 S. 1–16.

10.1007/978-3-319-90303-3_6

 

Sommariva A., 2018, The Political Economy of the Space Age: How Science and Technology Shape the Evolution of Human Society

10.1061/9780784479971.013

Zacny K., 2016, AIAA SPACE 2016, 5279

 

J. S. Lewis (1990) Extraction of volatiles and metals from extraterrestrial materialsinNASA Space Engineering Research Centre for Utilisation of Local Planetary Resources 7(N91-25223) 17–25;

Jenniskens P., 2015, Spacecraft Reconnaissance of Asteroid and Comet Interiors, Bd. 1829, 6039

10.1089/space.2014.0024

 

10.1016/j.spacepol.2016.08.004

10.1061/(ASCE)AS.1943-5525.0000236

10.1016/j.icarus.2010.07.001

V. Hellgren Student thesis series INES2016.

Milligan T., 2015, Asteroid mining, integrity and containment in Commercial space exploration: Ethics, policy and governance, 123

R. Graczyk arXiv preprint arXiv:1711.038132017.

10.1080/14660466.2017.1338874

J. S. Lewis In-space production of storable propellants NIAC Phase I final report NASA 2016.

 

E. Wikramanayake R. Hale J. Elam A. Shahriari V. Bahadur A. R. Alvarez-Hernandez N. Howard inASME 2018 International Mechanical Engineering Congress and Exposition American Society of Mechanical Engineers 2018 pp. V007T009A019-V007T009A019;

10.1016/j.actaastro.2019.02.002

McAree R., 2018, AusIMM Bull., 48

10.1002/anie.200300577

10.1002/ange.200300577

10.1002/9783527631445

10.1016/0168-1656(96)01406-X

S. Choi A. Ronca D. Leveson-Gower C. Gong K. Stube D. Pletcher C. Wigley J. Beegle R. Globus 2016 besucht am 08.08.2019 https://ntrs.nasa.gov/citations/20160010579.

 

Z. Techology Vol. 2020 2017besucht am 08.08.2019 https://www.zaiput.com/;

S. Tango Vol. 2020 2018 besucht am 09.09.2019 https://spacetango.com/tangolab/.

10.1007/978-0-387-09747-3_6

10.1039/c3lc50542a

10.1016/j.ces.2007.10.028

10.1016/j.cej.2015.08.028

 

10.1016/j.cej.2015.03.025

10.1039/C6CS00830E

 

10.1039/b926373j

10.1016/j.cej.2015.02.035

 

10.1088/0960-1317/19/3/035020

10.1007/s10544-009-9349-x

10.1016/j.watres.2013.06.058

10.1063/1.864268

 

10.1002/chem.201400283

10.1016/j.bmc.2010.03.073

10.1021/op050045q

10.1016/S1007-0214(06)70174-2

De Los Rios A. P., 2014, Ionic Liquids in Separation Technology

 

10.1021/om060950e

10.1016/j.talanta.2009.09.003

 

Wu B., 2001, Solar Eng., 445

10.1016/j.electacta.2007.04.064

Anastas P. T., 2010, Green solvents: ionic liquids, Bd. 6

 

10.1016/j.seppur.2010.01.004

10.1081/SS-100103620

10.1002/jctb.5544

 

10.1002/cssc.201301192

10.1016/j.trac.2017.03.006

 

10.1016/j.progpolymsci.2003.10.002

10.1016/j.trac.2004.09.005

10.1002/adma.200801975

10.3390/ijms11051973

10.1080/01496395.2014.952747

10.1016/j.seppur.2018.09.046

10.1016/j.hydromet.2012.05.003

10.1080/01932691.2015.1004185

10.1039/C6DT00833J

10.3390/met8060412

10.1039/C7RA04753C

10.1039/C5CC06595J

10.1039/c3gc40198g

10.1039/c2gc35246j

10.1016/j.molliq.2016.01.016

10.1016/j.seppur.2013.02.021

10.1016/j.seppur.2018.09.002

10.1021/acs.iecr.8b03408

10.1039/C5DT03791C

10.1039/C6RA09328K

10.1039/C7DT01142C

10.1039/C7NJ02361H

10.1021/ie201310v

10.1021/ie503502g

10.1002/slct.201600803

10.1016/j.seppur.2009.12.028

10.1016/j.watres.2011.06.011

10.1016/j.hydromet.2004.11.012

 

10.1016/S0304-386X(03)00180-4

10.1016/j.jpowsour.2006.05.044

10.1016/S0304-386X(99)00025-0

10.1016/0304-386X(82)90012-3

10.1016/j.procbio.2014.01.016

10.1016/j.actaastro.2015.05.016

P. Calla D. Fries C. Welch arXiv preprint arXiv:1808.050992018.

10.1007/s11214-016-0272-1

G. Bonin C. Foulds S. Armitage D. Faber Prospector-1: The First Commercial Small Spacecraft Mission to an Asteroidin30th Annual AIAA/USU Conference on Small Satellites Logan UT USA 2016 S. 1–11.

10.1016/j.actaastro.2012.05.030

 

10.1109/MAP.2017.2655576

Kosugi T., 2007, The Hinode Mission, 5

J. Goodwin Usuda Deep Space Center Support to ICE TDA Progress Report 42-84 Jet Propulsion Laboratory Pasadena Calif. 15.02.1986 S. 186–196.

J. Lad M. Johnston D. Tran D. Brown K. Roffo C.-A. Lee in2018 SpaceOps Conference 2018 S. 2579.

Lawson M. G., 1943, Fur, a study in English mercantilism, 1700–1775, Bd. 9

10.2307/3101392

U. Apte G. Ferrer I. Lewis R. Rendon Managing the service supply chain in the US Department of Defense: Opportunities and challenges (Technical Report NPS-AM-06-032) Monterey CA Acquisition Research Program Naval Postgraduate School 2006.

10.1088/2041-8205/811/2/L20

 

D. Linne G. Sanders J. Kleinhenz L. Moore Resources Roundtable Planetary & Terrestrial Mining and Sciences Symposium 2019 NASA Johnson Space Center Houston TX United States;

B. Khoshnevis A. Carlson M. Thangavelu ISRU-Based Robotic Construction Technologies for Lunar and Martian Infrastructures University of Southern California NIAC Phase II Final Report 2017;

J. Kleinhenz J. Collins M. Barmatz G. E. Voecks S. J. Hoffman ISRU Technology Development for Extraction of Water from the Mars Surface. Space Resources Roundtable XIX. 2018 NASA Kentucky US.

G. B. Sanders Canadian Institute of Mining (CIM) 2015 Convention Montreal QC.

10.1021/op050227k

Wouters M., 2020, Journal of Separation and Purification Technology