Komlos-Major-Tusnady approximation for the general empirical process and Haar expansions of classes of functions

Springer Science and Business Media LLC - Tập 7 Số 1 - Trang 73-118 - 1994
Vladimir Koltchinskii1
1Department of Probability and Statistics, Kiev State University, 252017, Kiev, Ukraine

Tóm tắt

Từ khóa


Tài liệu tham khảo

Beck, J. (1985). Lower bounds on the approximation of the multivariate empirical process.Z. Wahrsch. verw. Gebiete 70, 289–306.

Borisov, I. S. (1983). Rate of convergence in invariance principle in linear spaces. Application to empirical measures.Lecture notes in Math. 1021, 45–58.

Borisov, I. S. (1985). New approach to problem of approximation of the distributions of sums of independent random variables in linear spaces.Trudi Instit. Matemat. Sibirsk. Otdelen. AN SSSR 5, 3–27.

Borisov, I. S. (1987). Rate of convergence in the invariance principle for empirical measures.Proc. 1st World Congress of Bernoulli Soc., Amsterdam, VNU Sci. Press, pp. 833–836.

Bretagnolle, J., and Massart, P. (1989). Hungarian construction from the nonasymptotic viewpoint.Ann. Prob. 17, 239–256.

Csörgö, S. (1981). Limit behavior of the empirical characteristic function.Ann. Prob. 9, 130–144.

Dudley, R. M. (1978). Central limit theorem for empirical measures.Ann. Prob. 6, 899–929.

Dudley, R. M. (1981). Donsker classes of functions.Statistics and Related Topics (Proc. Symp. Ottawa, 1980), North-Holland, New York, pp. 341–352.

Dudley, R. M. (1984). A course on empirical processes. Springer, Berlin,Lect. Notes in Math. 1097, 1–142.

Dudley, R. M., and Philipp, W. (1983). Invariance principles for sums of Banach space valued random elements and empirical processes.Z. Wahrsch. verw. Gebiete 62, 509–552.

Dudley, R. M. (1987). Universal Donsker classes and metric entropy.Ann. Prob. 15, 1306–1326.

Giné, E., and Zinn, J. (1984). Some limit theorems for empirical processes.Ann. Prob. 12, 929–989.

Giné, E., and Zinn, J. (1986). Lectures on the central limit theorem for empirical processes. Springer, Berlin,Lect. Notes in Math. 1221, 50–113.

Kashin, B. S., and Saakjan, A. A. (1984).Orthogonal Series, Nauka, Moscow.

Koltchinskii, V. I. (1981). On the central limit theorem for empirical measures.Teor. Veroyatnost. i Matem. Statist. 24, 63–75; English transl.,Theor. Prob. Math. Statist. Vol. 24 (1982).

Koltchinskii, V. I. (1985). Functional limit theorems and empirical entropy. I.Teor. Veroyatnost. i Matem. Statist. 33, 31–42; English transl.,Theor. Prob. Math. Statist. Vol. 33 (1986).

Koltchinskii, V. I. (1986). Functional limit theorems and empirical entropy. II.Teor. Veroyatnost. i Matem. Statist. 34, 73–85; English transl.,Theor. Prob. Math. Statist. Vol. 34 (1987).

Koltchinskii, V. I. (1990). Rates of convergence in the invariance principle for empirical processes. In:New Trends in Probability and Statistics, Vol. 1, Proc. of the Bakuriani Colloquium in Honor of Yu. V. Prohorov, V. V. Sazonov, and T. Shervashidze (eds.), VSP/Mokslas, pp. 167–182.

Koltchinskii, V. I. (1991a). On the accuracy of approximation of empirical process by Brownian bridge.Sibirsk. Matemat. Jurn. 32, 4.

Koltchinskii, V. I. (1991b). The rates of convergence in the invariance principle for empirical processes and Haar expansions of functional classes. Abstracts of communications of the 6th USSR-Japan symposium on probability theory and mathematical statistics, Kiev, p. 79.

Komlos, J., Major, P., and Tusnady, G. (1975). An approximation of partial sums of independent rv's and the sample df. I.Z. Wahrsch. verw. Gebiete 32, 111–131.

Komlos, J., Major, P., and Tusnady, G. (1976). An approximation of partial sums of independent rv's and the sample df. II.Z. Wahrsch. verw. Gebiete 34, 33–58.

Le Cam, L. (1983). A remark on empirical measures.Festschrift for Erich L. Lehman in Honor of his Sixty-fifth birthday, pp. 305–326. Wadsworth, Belmont, California.

Massart, P. (1986). Rates of convergence in the central limit theorem for empirical process.Ann. Inst. Henri Poincaré 22, 381–423.

Massart, P. (1989). Strong approximation for multivariate empirical and related processes, via KMT constructions.Ann. Prob. 17, 266–291.

Mason, D. M., and van Zwet, W. R. (1987). A refinement of the KMT inequality for the uniform empirical process.Ann. Prob. 15, 871–884.

Pollard, D. (1984).Convergence of Stochastic Processes. Springer, Berlin, Heidelberg.

Rio, E. (1991). Local invariance principle and its application to density estimation. Preprint.

Rio, E. (1992). Strong approximation for set-indexed partial sum processes, via KMT constructions. II. Preprint.

Talagrand, M. (1987). Donsker classes and random geometry.Ann. Prob. 15, 1327–1338.

Talagrand, M. (1988). Donsker classes of sets.Prob. Theory and Related Fields 78, 169–191.

Vapnik, V., and Chervonenkis, A. (1971). On uniform convergence of the frequencies of occurrence of events to their probabilities.Teor. Veroyatnost. i Primen. 16, 264–279; English transl.,Theor. Prob. Appl. Vol. 16 (1971).

Vapnik, V., and Chervonenkis, A. (1981). Necessary and sufficient conditions for the uniform convergence of empirical means to their true values.Teor. Veroyatnost. i Primen. 26, 543–563; English transl.,Theor. Prob. Appl. Vol. 26 (1981).