Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Đan kết hố giun bằng sự rối loạn trong siêu hấp dẫn
Tóm tắt
Chúng tôi xây dựng một hình học hố giun với một ranh giới trong siêu hấp dẫn loại IIB bằng cách khuấy động hai chồng N brane D3 cực đại trong giới hạn không tương tác. Giải pháp nội suy từ hình học AdS-Schwarzschild phẳng hai bên ở bên trong, thông qua giải pháp hai trung tâm hài hòa trong vùng trung gian, đến không gian AdS ở xa. Việc xây dựng bao gồm một sự biến đổi CPT trong việc ghép hố giun với các cổ họng bên ngoài, tạo ra một hiện tượng đơn trị toàn cầu cho một số tọa độ, trong khi vẫn bảo tồn tính định hướng. Hình học có một diễn giải đôi trong lý thuyết Super Yang-Mills $$ \mathcal{N} $$ = 4 SU(2N) theo nghĩa lý thuyết Higgsed SU(2N) → S(U(N) × U(N)), trong đó $$ \mathcal{O} $$ (N2) bậc tự do trong mỗi miền SU(N) được rối loạn trong một trạng thái nhiều trường thermofield gần đúng ở nhiệt độ lạnh hơn nhiều so với quy mô Higgs. Chúng tôi lập luận rằng giải pháp có thể được làm cho tồn tại dài lâu bằng cách lựa chọn tham số thích hợp và có ý kiến về các cơ chế tạo ra khả năng đi qua. Chúng tôi cũng mô tả một cách xây dựng hố giun đôi giữa hai vũ trụ.
Từ khóa
#Elementary Particles #Quantum Field Theory #Quantum Field Theories #String Theory #Classical and Quantum Gravitation #Relativity Theory #Quantum PhysicsTài liệu tham khảo
M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42 (2010) 2323 [arXiv:1005.3035] [INSPIRE].
J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].
V. Balasubramanian, P. Hayden, A. Maloney, D. Marolf and S.F. Ross, Multiboundary wormholes and holographic entanglement, Class. Quant. Grav. 31 (2014) 185015 [arXiv:1406.2663] [INSPIRE].
D. Marolf, H. Maxfield, A. Peach and S.F. Ross, Hot multiboundary wormholes from bipartite entanglement, Class. Quant. Grav. 32 (2015) 215006 [arXiv:1506.04128] [INSPIRE].
J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61 (2013) 781 [arXiv:1306.0533] [INSPIRE].
I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [INSPIRE].
M. Cvetič, S.S. Gubser, H. Lü and C.N. Pope, Symmetric potentials of gauged supergravities in diverse dimensions and Coulomb branch of gauge theories, Phys. Rev. D 62 (2000) 086003 [hep-th/9909121] [INSPIRE].
Y.Y. Wu, A Note on AdS/SYM correspondence on the Coulomb branch, hep-th/9809055 [INSPIRE].
A. Hashimoto, Holographic description of D3-branes in flat space, Phys. Rev. D 60 (1999) 127902 [hep-th/9903227] [INSPIRE].
M. Duff and J. Lu, The self-dual type IIB superthreebrane, Phys. Lett. B 273 (1991) 409.
G.T. Horowitz and A. Strominger, Black strings and p-branes, Nucl. Phys. B 360 (1991) 197.
J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].
P. Kraus, F. Larsen and S.P. Trivedi, The Coulomb branch of gauge theory from rotating branes, JHEP 03 (1999) 003 [hep-th/9811120] [INSPIRE].
K. Nayek and S. Roy, Decoupling limit and throat geometry of non-SUSY D3 brane, Phys. Lett. B 766 (2017) 192 [arXiv:1608.05036] [INSPIRE].
A. Bergman, H. Lü, J. Mei and C.N. Pope, AdS wormholes, Nucl. Phys. B 810 (2009) 300 [arXiv:0808.2481] [INSPIRE].
J.M. Maldacena and L. Maoz, Wormholes in AdS, JHEP 02 (2004) 053 [hep-th/0401024] [INSPIRE].
A. Anabalón, B. de Wit and J. Oliva, Supersymmetric traversable wormholes, JHEP 09 (2020) 109 [arXiv:2001.00606] [INSPIRE].
M.S. Costa, Absorption by double centered D3-branes and the Coulomb branch of N = 4 SYM theory, JHEP 05 (2000) 041 [hep-th/9912073] [INSPIRE].
J. Michelson and A. Strominger, Superconformal multiblack hole quantum mechanics, JHEP 09 (1999) 005 [hep-th/9908044] [INSPIRE].
G.J. Galloway, K. Schleich, D. Witt and E. Woolgar, The AdS/CFT correspondence conjecture and topological censorship, Phys. Lett. B 505 (2001) 255 [hep-th/9912119] [INSPIRE].
M.S. Morris, K.S. Thorne and U. Yurtsever, Wormholes, time machines, and the weak energy condition, Phys. Rev. Lett. 61 (1988) 1446 [INSPIRE].
M. Visser, S. Kar and N. Dadhich, Traversable wormholes with arbitrarily small energy condition violations, Phys. Rev. Lett. 90 (2003) 201102 [gr-qc/0301003] [INSPIRE].
M.S. Morris, K.S. Thorne and U. Yurtsever, Wormholes, time machines, and the weak energy condition, Phys. Rev. Lett. 61 (1988) 1446 [INSPIRE].
D. Hochberg and M. Visser, Null energy condition in dynamic wormholes, Phys. Rev. Lett. 81 (1998) 746 [gr-qc/9802048] [INSPIRE].
P. Gao, D.L. Jafferis and A.C. Wall, Traversable wormholes via a double trace deformation, JHEP 12 (2017) 151 [arXiv:1608.05687] [INSPIRE].
B. Freivogel, D.A. Galante, D. Nikolakopoulou and A. Rotundo, Traversable wormholes in AdS and bounds on information transfer, JHEP 01 (2020) 050 [arXiv:1907.13140] [INSPIRE].
Z. Fu, B. Grado-White and D. Marolf, A perturbative perspective on self-supporting wormholes, Class. Quant. Grav. 36 (2019) 045006 [Erratum ibid. 36 (2019) 249501] [arXiv:1807.07917] [INSPIRE].
D. Marolf and S. McBride, Simple perturbatively traversable wormholes from bulk fermions, JHEP 11 (2019) 037 [arXiv:1908.03998] [INSPIRE].
J. Maldacena, A. Milekhin and F. Popov, Traversable wormholes in four dimensions, arXiv:1807.04726 [INSPIRE].
A. Anand and P.K. Tripathy, Self-supporting wormholes with massive vector field, arXiv:2008.10920 [INSPIRE].
G.T. Horowitz, D. Marolf, J.E. Santos and D. Wang, Creating a traversable wormhole, Class. Quant. Grav. 36 (2019) 205011 [arXiv:1904.02187] [INSPIRE].
Z. Fu, B. Grado-White and D. Marolf, Traversable asymptotically flat wormholes with short transit times, Class. Quant. Grav. 36 (2019) 245018 [arXiv:1908.03273] [INSPIRE].
J. Maldacena, D. Stanford and Z. Yang, Diving into traversable wormholes, Fortsch. Phys. 65 (2017) 1700034 [arXiv:1704.05333] [INSPIRE].
J. Maldacena and X.-L. Qi, Eternal traversable wormhole, arXiv:1804.00491 [INSPIRE].
P. Gao and D.L. Jafferis, A traversable wormhole teleportation protocol in the SYK model, arXiv:1911.07416 [INSPIRE].
J. Maldacena and A. Milekhin, SYK wormhole formation in real time, arXiv:1912.03276 [INSPIRE].
D. Bak, C. Kim and S.-H. Yi, Experimental probes of traversable wormholes, JHEP 12 (2019) 005 [arXiv:1907.13465] [INSPIRE].
A.R. Brown et al., Quantum gravity in the lab: teleportation by size and traversable wormholes, arXiv:1911.06314 [INSPIRE].
F. Aprile and V. Niarchos, Large-N transitions of the connectivity index, JHEP 02 (2015) 083 [arXiv:1410.7773] [INSPIRE].
L. Brink, J. H. Schwarz and J. Scherk, Supersymmetric Yang-Mills theories, Nucl. Phys. B 121 (1977) 77.
M.R. Douglas and W. Taylor, Branes in the bulk of Anti-de Sitter space, hep-th/9807225 [INSPIRE].
G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72 (1974) 461.
S. Weinberg, Physical processes in a convergent theory of the weak and electromagnetic interactions, Phys. Rev. Lett. 27 (1971) 1688 [INSPIRE].
N. Drukker and D.J. Gross, An exact prediction of N = 4 SUSYM theory for string theory, J. Math. Phys. 42 (2001) 2896 [hep-th/0010274] [INSPIRE].
J. Polchinski, Dirichlet branes and Ramond-Ramond charges, Phys. Rev. Lett. 75 (1995) 4724 [hep-th/9510017] [INSPIRE].
M.J. Duff, R.R. Khuri and J.X. Lu, String solitons, Phys. Rept. 259 (1995) 213 [hep-th/9412184] [INSPIRE].
A.W. Peet, TASI lectures on black holes in string theory, in Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 99): Strings, Branes, and Gravity, pp. 353–433, 8, 2000, DOI [hep-th/0008241] [INSPIRE].
E. Kiritsis, String theory in a nutshell, 2nd edition, Princeton University Press, Princeton U.S.A. (2019).
C.V. Johnson, D-branes, Cambridge University Press, Cambridge U.K. (2003).
M. Ammon and J. Erdmenger, Gauge/gravity duality: foundations and applications, Cambridge University Press, Cambridge U.K. (2015).
H. Verlinde, ER = EPR revisited: on the entropy of an Einstein-Rosen bridge, arXiv:2003.13117 [INSPIRE].
G.W. Gibbons, Born-Infeld particles and Dirichlet p-branes, Nucl. Phys. B 514 (1998) 603 [hep-th/9709027] [INSPIRE].
K.A. Intriligator, Maximally supersymmetric RG flows and AdS duality, Nucl. Phys. B 580 (2000) 99 [hep-th/9909082] [INSPIRE].
E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].
V. Balasubramanian, P. Kraus, A.E. Lawrence and S.P. Trivedi, Holographic probes of anti-de Sitter space-times, Phys. Rev. D 59 (1999) 104021 [hep-th/9808017] [INSPIRE].
G. Arutyunov, S. Frolov and A.C. Petkou, Operator product expansion of the lowest weight CPOs in \( \mathcal{N} \) = 4 SYM4 at strong coupling, Nucl. Phys. B 586 (2000) 547 [Erratum ibid. 609 (2001) 539] [hep-th/0005182] [INSPIRE].
N. Chai, S. Chaudhuri, C. Choi, Z. Komargodski, E. Rabinovici and M. Smolkin, Thermal order in conformal theories, Phys. Rev. D 102 (2020) 065014 [arXiv:2005.03676] [INSPIRE].
R.C. Myers, Dielectric branes, JHEP 12 (1999) 022 [hep-th/9910053] [INSPIRE].
J. McGreevy, L. Susskind and N. Toumbas, Invasion of the giant gravitons from Anti-de Sitter space, JHEP 06 (2000) 008 [hep-th/0003075] [INSPIRE].
V. Balasubramanian, M. Berkooz, A. Naqvi and M.J. Strassler, Giant gravitons in conformal field theory, JHEP 04 (2002) 034 [hep-th/0107119] [INSPIRE].
S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual N = 4 SYM theory, Adv. Theor. Math. Phys. 5 (2002) 809 [hep-th/0111222] [INSPIRE].
V. Balasubramanian, D. Berenstein, B. Feng and M.X. Huang, D-branes in Yang-Mills theory and emergent gauge symmetry, JHEP 03 (2005) 006 [hep-th/0411205] [INSPIRE].