Knee Osteoarthritis: A Review of Pathogenesis and State-Of-The-Art Non-Operative Therapeutic Considerations

Genes - Tập 11 Số 8 - Trang 854
Dragan Primorac1,2,3,4,5,6,7,8,9, Vilim Molnar7,8, Eduard Rod7,8, Željko Jeleč10,7,8, Fabijan Čukelj5,8, Vid Matišić8, Trpimir Vrdoljak11,8, Damir Hudetz11,7,8, Hana Hajsok12,8, Igor Borić3,4,5,8
1Eberly College of Science, The Pennsylvania State University, University Park, State College, PA 16802, USA
2Medical School REGIOMED, 96 450 Coburg, Germany
3Medical School, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
4Medical School, University of Rijeka, 51000 Rijeka, Croatia
5Medical School, University of Split, 21000 Split, Croatia
6School of Medicine, Faculty of Dental Medicine and Health, University “Josip Juraj Strossmayer”, 31000 Osijek, Croatia
7School of Medicine, JJ Strossmayer University of Osijek, 31000 Osijek, Croatia
8St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia
9The Henry C. Lee College of Criminal Justice and Forensic Sciences, University of New Haven, West Haven, CT 06516, USA
10Department of Nursing, University North, 48 000 Varaždin, Croatia
11Department of Orthopedics, Clinical Hospital “Sveti Duh”, 10000 Zagreb, Croatia
12Medical School, University of Zagreb, 10000 Zagreb, Croatia

Tóm tắt

Being the most common musculoskeletal progressive condition, osteoarthritis is an interesting target for research. It is estimated that the prevalence of knee osteoarthritis (OA) among adults 60 years of age or older is approximately 10% in men and 13% in women, making knee OA one of the leading causes of disability in elderly population. Today, we know that osteoarthritis is not a disease characterized by loss of cartilage due to mechanical loading only, but a condition that affects all of the tissues in the joint, causing detectable changes in tissue architecture, its metabolism and function. All of these changes are mediated by a complex and not yet fully researched interplay of proinflammatory and anti-inflammatory cytokines, chemokines, growth factors and adipokines, all of which can be measured in the serum, synovium and histological samples, potentially serving as biomarkers of disease stage and progression. Another key aspect of disease progression is the epigenome that regulates all the genetic expression through DNA methylation, histone modifications, and mRNA interference. A lot of work has been put into developing non-surgical treatment options to slow down the natural course of osteoarthritis to postpone, or maybe even replace extensive surgeries such as total knee arthroplasty. At the moment, biological treatments such as platelet-rich plasma, bone marrow mesenchymal stem cells and autologous microfragmented adipose tissue containing stromal vascular fraction are ordinarily used. Furthermore, the latter two mentioned cell-based treatment options seem to be the only methods so far that increase the quality of cartilage in osteoarthritis patients. Yet, in the future, gene therapy could potentially become an option for orthopedic patients. In the following review, we summarized all of the latest and most important research in basic sciences, pathogenesis, and non-operative treatment.

Từ khóa


Tài liệu tham khảo

Bortoluzzi, 2018, Osteoarthritis and its management—Epidemiology, nutritional aspects and environmental factors, Autoimmun. Rev., 17, 1097, 10.1016/j.autrev.2018.06.002

Mabey, 2015, Cytokines as biochemical markers for knee osteoarthritis, World J. Orthop., 6, 95, 10.5312/wjo.v6.i1.95

Nelson, 2018, Osteoarthritis year in review 2017: Clinical, Osteoarthr. Cartil., 26, 319, 10.1016/j.joca.2017.11.014

Loeser, 2012, Osteoarthritis: A disease of the joint as an organ, Arthritis Rheum., 64, 1697, 10.1002/art.34453

Barr, 2016, Osteoarthritis, Nat. Rev. Dis. Prim., 2, 1

Swingler, 2019, The function of microRNAs in cartilage and osteoarthritis, Clin. Exp. Rheumatol., 37, 40

Ilas, 2017, Targeting subchondral bone mesenchymal stem cell activities for intrinsic joint repair in osteoarthritis, Futur. Sci. OA, 3, FSO228, 10.4155/fsoa-2017-0055

Hunter, 2019, Osteoarthritis, Lancet, 393, 1745, 10.1016/S0140-6736(19)30417-9

Carlson, 2019, Characterization of synovial fluid metabolomic phenotypes of cartilage morphological changes associated with osteoarthritis, Osteoarthr. Cartil., 27, 1174, 10.1016/j.joca.2019.04.007

Nguyen, 2011, Increasing Prevalence of Knee Pain and Symptomatic Knee Osteoarthritis: Survey and Cohort Data, Ann. Intern. Med., 155, 725, 10.7326/0003-4819-155-11-201112060-00004

Zhang, 2010, Epidemiology of Osteoarthritis, Clin. Geriatr. Med., 26, 355, 10.1016/j.cger.2010.03.001

(2016). GBD 2015 Disease and Injury Incidence and Prevalence Collaborators Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet, 388, 1545–1602.

Prince, 2015, The burden of disease in older people and implications for health policy and practice, Lancet, 385, 549, 10.1016/S0140-6736(14)61347-7

Loeser, 2010, Why is osteoarthritis an age-related disease?, Best Pract. Res. Clin. Rheumatol., 24, 15, 10.1016/j.berh.2009.08.006

Felson, 2013, Osteoarthritis as a disease of mechanics, Osteoarthr. Cartil., 21, 10, 10.1016/j.joca.2012.09.012

Vina, 2018, Epidemiology of osteoarthritis, Curr. Opin. Rheumatol., 30, 160, 10.1097/BOR.0000000000000479

Harris, 2015, HIP osteoarthritis and work, Best Pract. Res. Clin. Rheumatol., 29, 462, 10.1016/j.berh.2015.04.015

Ezzat, 2014, Occupational Physical Loading Tasks and Knee Osteoarthritis: A Review of the Evidence, Physiother. Can., 66, 91, 10.3138/ptc.2012-45BC

Driban, 2017, Is Participation in Certain Sports Associated With Knee Osteoarthritis? A Systematic Review, J. Athl. Train., 52, 497, 10.4085/1062-6050-50.2.08

Berenbaum, 2018, Modern-day environmental factors in the pathogenesis of osteoarthritis, Nat. Rev. Rheumatol., 14, 674, 10.1038/s41584-018-0073-x

Hame, 2013, Knee osteoarthritis in women, Curr. Rev. Musculoskelet. Med., 6, 182, 10.1007/s12178-013-9164-0

Long, 2020, Burden of osteoarthritis in China, 1990–2017: Findings from the Global Burden of Disease Study 2017, Lancet Rheumatol., 2, e164, 10.1016/S2665-9913(19)30145-6

Wang, 2016, Osteoarthritis and the risk of cardiovascular disease: A meta-analysis of observational studies, Sci. Rep., 6, 1, 10.1038/srep39672

Wallace, 2017, Knee osteoarthritis has doubled in prevalence since the mid-20th century, Proc. Natl. Acad. Sci. USA, 114, 9332, 10.1073/pnas.1703856114

Veronese, 2016, Osteoarthritis and mortality: A prospective cohort study and systematic review with meta-analysis, Semin. Arthritis Rheum., 46, 160, 10.1016/j.semarthrit.2016.04.002

Bianco, D., Todorov, A., Čengić, T., Pagenstert, G., Schären, S., Netzer, C., Hügle, T., and Geurts, J. (2018). Alterations of Subchondral Bone Progenitor Cells in Human Knee and Hip Osteoarthritis Lead to a Bone Sclerosis Phenotype. Int. J. Mol. Sci., 19.

Reynard, 2020, Osteoarthritis year in review 2019: Genetics, genomics and epigenetics, Osteoarthr. Cartil., 28, 275, 10.1016/j.joca.2019.11.010

Rice, 2020, Interplay between genetics and epigenetics in osteoarthritis, Nat. Rev. Rheumatol., 16, 268, 10.1038/s41584-020-0407-3

Emery, 2019, Establishing outcome measures in early knee osteoarthritis, Nat. Rev. Rheumatol., 15, 438, 10.1038/s41584-019-0237-3

Xia, 2014, Osteoarthritis Pathogenesis: A Review of Molecular Mechanisms, Calcif. Tissue Int., 95, 495, 10.1007/s00223-014-9917-9

Goldring, 2016, Changes in the osteochondral unit during osteoarthritis: Structure, function and cartilage bone crosstalk, Nat. Rev. Rheumatol., 12, 632, 10.1038/nrrheum.2016.148

Carballo, 2017, Basic Science of Articular Cartilage, Clin. Sports Med., 36, 413, 10.1016/j.csm.2017.02.001

Primorac, 1994, Molecular basis of nanomelia, a heritable chondrodystrophy of chicken, Matrix Biol., 14, 297, 10.1016/0945-053X(94)90195-3

Primorac, 1995, Reduced Type II collagen mRNA in nanomelic cultured chondrocytes: An example of extracellular matrix/collagen feedback regulation?, Croat. Med. J., 36, 85

Primorac, 1999, Premature termination codon in the aggrecan gene of nanomelia and its influence on mRNA transport and stability, Croat. Med. J., 40, 528

Houard, 2013, Homeostatic Mechanisms in Articular Cartilage and Role of Inflammation in Osteoarthritis, Curr. Rheumatol. Rep., 15, 375, 10.1007/s11926-013-0375-6

Goldring, 2009, Cartilage homeostasis in health and rheumatic diseases, Arthritis Res. Ther., 11, 224, 10.1186/ar2592

Musumeci, 2016, The Effect of Mechanical Loading on Articular Cartilage, J. Funct. Morphol. Kinesiol., 1, 154, 10.3390/jfmk1020154

Jacobs, C.R., Huang, H., and Kwon, R.Y. (2012). Introduction to Cell Mechanics and Mechanobiology, Garland Science.

Vanwanseele, 2003, Longitudinal Analysis of Cartilage Atrophy in the Knees of Patients with Spinal Cord Injury, Arthritis Rheum., 48, 3377, 10.1002/art.11367

Mansfield, 2019, Collagen reorganization in cartilage under strain probed by polarization sensitive second harmonic generation microscopy, J. R. Soc. Interface, 16, 20180611, 10.1098/rsif.2018.0611

Mansfield, 2015, The micromechanics of the superficial zone of articular cartilage, Osteoarthr. Cartil., 23, 1806, 10.1016/j.joca.2015.05.030

Korhonen, 2008, Importance of Collagen Orientation and Depth-Dependent Fixed Charge Densities of Cartilage on Mechanical Behavior of Chondrocytes, J. Biomech. Eng., 130, 021003, 10.1115/1.2898725

Wilson, 2006, Prediction of collagen orientation in articular cartilage by a collagen remodeling algorithm, Osteoarthr. Cartil., 14, 1196, 10.1016/j.joca.2006.05.006

Wu, 2008, Study of the collagen structure in the superficial zone and physiological state of articular cartilage using a 3D confocal imaging technique, J. Orthop. Surg. Res., 3, 29, 10.1186/1749-799X-3-29

Mansfield, 2012, A multi-modal multiphoton investigation of microstructure in the deep zone and calcified cartilage, J. Anat., 220, 405, 10.1111/j.1469-7580.2012.01479.x

Ruhlen, 2014, The chondrocyte primary cilium, Osteoarthr. Cartil., 22, 1071, 10.1016/j.joca.2014.05.011

Goldring, 2010, Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis, Ann. N. Y Acad. Sci., 1192, 230, 10.1111/j.1749-6632.2009.05240.x

Stanton, 2005, ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro, Nature, 434, 648, 10.1038/nature03417

Pratta, 2006, Development and characterization of a highly specific and sensitive sandwich ELISA for detection of aggrecanase-generated aggrecan fragments, Osteoarthr. Cartil., 14, 702, 10.1016/j.joca.2006.01.012

Loeser, 2006, Molecular mechanisms of cartilage destruction: Mechanics, inflammatory mediators, and aging collide, Arthritis Rheum., 54, 1357, 10.1002/art.21813

Parrish, A.R. (2017). Matrix Metalloproteinases and Tissue Remodeling in Health and Disease: Target Tissues and Therapy, Elsevier. [1st ed.].

Rolauffs, 2010, Proliferative Remodeling of the Spatial Organization of Human Superficial Chondrocytes Distant From Focal Early Osteoarthritis, Arthritis Rheum. Off. J. Am. Coll. Rheum., 62, 489

Palmer, 2015, Osteoarthritis, Lancet, 386, 376, 10.1016/S0140-6736(14)60802-3

Zhen, 2014, Targeting TGFβ signaling in subchondral bone and articular cartilage homeostasis, Trends Pharmacol. Sci., 35, 227, 10.1016/j.tips.2014.03.005

Li, 2013, Subchondral bone in osteoarthritis: Insight into risk factors and microstructural changes, Arthritis Res. Ther., 15, 223, 10.1186/ar4405

2015, Subchondral bone and osteoarthritis, Curr. Opin. Rheumatol., 27, 420, 10.1097/BOR.0000000000000181

Sanchez, 2012, Regulation of subchondral bone osteoblast metabolism by cyclic compression, Arthritis Rheum., 64, 1193, 10.1002/art.33445

Burr, 2012, Bone remodelling in osteoarthritis, Nat. Rev. Rheumatol., 8, 665, 10.1038/nrrheum.2012.130

Goldring, 2009, Role of Bone in Osteoarthritis Pathogenesis, Med. Clin. N. Am., 93, 25, 10.1016/j.mcna.2008.09.006

Driban, 2012, Bone marrow lesions are associated with altered trabecular morphometry, Osteoarthr. Cartil., 20, 1519, 10.1016/j.joca.2012.08.013

Bowes, 2016, Osteoarthritic bone marrow lesions almost exclusively colocate with denuded cartilage: A 3D study using data from the Osteoarthritis Initiative, Ann. Rheum. Dis., 75, 1852, 10.1136/annrheumdis-2015-208407

Cotofana, 2013, Relationship between knee pain and the presence, location, size and phenotype offemorotibial denuded areas of subchondral bone as visualized by MRI, Osteoarthr. Cartil., 21, 1214, 10.1016/j.joca.2013.04.001

Crema, 2010, Subchondral cystlike lesions develop longitudinally in areas of bone marrow edema-like lesions in patients with or at risk for knee osteoarthritis: Detection with MR imaging—The MOST study, Radiology, 256, 855, 10.1148/radiol.10091467

Yang, 2020, Comparison of early-stage changes of osteoarthritis in cartilage and subchondral bone between two different rat models, PeerJ, 8, e8934, 10.7717/peerj.8934

Crema, 2014, The relationship between subchondral sclerosis detected with MRI and cartilage loss in a cohort of subjects with knee pain: The knee osteoarthritis progression (KOAP) study, Osteoarthr. Cartil., 22, 540, 10.1016/j.joca.2014.01.006

Wenham, 2010, The role of synovitis in osteoarthritis, Ther. Adv. Musculoskelet. Dis., 2, 349, 10.1177/1759720X10378373

Schmidt, 2007, Boundary lubrication of articular cartilage: Role of synovial fluid constituents, Arthritis Rheum., 56, 882, 10.1002/art.22446

Griffin, 2019, Innate inflammation and synovial macrophages in osteoarthritis pathophysiology, Clin. Exp. Rheumatol., 37, 57

Belluzzi, 2019, Contribution of Infrapatellar Fat Pad and Synovial Membrane to Knee Osteoarthritis Pain, Biomed. Res. Int., 2019, 1, 10.1155/2019/6390182

Sellam, 2010, The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis, Nat. Rev. Rheumatol., 6, 625, 10.1038/nrrheum.2010.159

Xie, 2019, Clinical implications of macrophage dysfunction in the development of osteoarthritis of the knee, Cytokine Growth Factor Rev., 46, 36, 10.1016/j.cytogfr.2019.03.004

Geurts, 2016, What drives osteoarthritis?-synovial versus subchondral bone pathology, Rheumatology, 56, 1461

Ene, 2015, Synovial inflammation in patients with different stages of knee osteoarthritis, Rom. J. Morphol. Embryol., 56, 169

Zuurmond, 2012, Synovial inflammation, immune cells and their cytokines in osteoarthritis: A review, Osteoarthr. Cartil., 20, 1484, 10.1016/j.joca.2012.08.027

Ayral, 2005, Synovitis: A potential predictive factor of structural progression of medial tibiofemoral knee osteoarthritis - Results of a 1 year longitudinal arthroscopic study in 422 patients, Osteoarthr. Cartil., 13, 361, 10.1016/j.joca.2005.01.005

Kapoor, 2011, Role of proinflammatory cytokines in the pathophysiology of osteoarthritis, Nat. Rev. Rheumatol., 7, 33, 10.1038/nrrheum.2010.196

Yang, 2017, Epigenetic modifications of interleukin-6 in synovial fibroblasts from osteoarthritis patients, Sci. Rep., 7, 1

Baker, 2010, Relation of synovitis to knee pain using contrast-enhanced MRIs, Ann. Rheum. Dis., 69, 1779, 10.1136/ard.2009.121426

Roemer, 2010, Anatomical distribution of synovitis in knee osteoarthritis and its association with joint effusion assessed on non-enhanced and contrast-enhanced MRI, Osteoarthr. Cartil., 18, 1269, 10.1016/j.joca.2010.07.008

Parkes, 2016, Synovial tissue volume: A treatment target in knee osteoarthritis (OA), Ann. Rheum. Dis., 75, 84, 10.1136/annrheumdis-2014-206927

Hunter, 2008, The Symptoms of Osteoarthritis and the Genesis of Pain, Rheum. Dis. Clin. N. Am., 34, 623, 10.1016/j.rdc.2008.05.004

Fusco, 2017, Degenerative Joint Diseases and Neuroinflammation, Pain. Pract., 17, 522, 10.1111/papr.12551

Conaghan, 2005, EULAR report on the use of ultrasonography in painful knee osteoarthritis. Part 1: Prevalence of inflammation in osteoarthritis, Ann. Rheum. Dis., 64, 1703, 10.1136/ard.2005.038026

Karvonen, 1995, Synovial thickening detected by MR imaging in osteoarthritis of the knee confirmed by biopsy as synovitis, Magn. Reson. Imaging, 13, 177, 10.1016/0730-725X(94)00119-N

Loeuille, 2005, Macroscopic and microscopic features of synovial membrane inflammation in the osteoarthritic knee: Correlating magnetic resonance imaging findings with disease severity, Arthritis Rheum., 52, 3492, 10.1002/art.21373

Eymard, 2016, Inflammation of the infrapatellar fat pad, Jt. Bone Spine, 83, 389, 10.1016/j.jbspin.2016.02.016

Gackowski, 2017, Hoffa’s Fat Pad Abnormality in the Development of Knee Osteoarthritis, Advances in Experimental Medicine and Biology, Volume 1039, 95, 10.1007/5584_2017_77

Roemer, 2016, Magnetic resonance imaging of Hoffa’s fat pad and relevance for osteoarthritis research: A narrative review, Osteoarthr. Cartil., 24, 383, 10.1016/j.joca.2015.09.018

Barboza, 2017, Profibrotic Infrapatellar Fat Pad Remodeling Without M1 Macrophage Polarization Precedes Knee Osteoarthritis in Mice With Diet-Induced Obesity, Arthritis Rheumatol., 69, 1221, 10.1002/art.40056

Wu, 2020, The role of macrophages in osteoarthritis and cartilage repair, Osteoarthr. Cartil., 28, 544, 10.1016/j.joca.2019.12.007

Ushiyama, 2003, Cytokine production in the infrapatellar fat pad: Another source of cytokines in knee synovial fluids, Ann. Rheum. Dis., 62, 108, 10.1136/ard.62.2.108

Simopoulou, 2007, Differential expression of leptin and leptin’s receptor isoform (Ob-Rb) mRNA between advanced and minimally affected osteoarthritic cartilage; effect on cartilage metabolism, Osteoarthr. Cartil., 15, 872, 10.1016/j.joca.2007.01.018

Englund, 2012, Meniscus pathology, osteoarthritis and the treatment controversy, Nat. Rev. Rheumatol., 8, 412, 10.1038/nrrheum.2012.69

Hunter, 2006, The association of meniscal pathologic changes with cartilage loss in symptomatic knee osteoarthritis, Arthritis Rheum., 54, 795, 10.1002/art.21724

Ding, 2007, Meniscal tear as an osteoarthritis risk factor in a largely non-osteoarthritic cohort: A cross-sectional study, J. Rheumatol., 34, 776

Crema, 2010, The association of prevalent medial meniscal pathology with cartilage loss in the medial tibiofemoral compartment over a 2-year period, Osteoarthr. Cartil., 18, 336, 10.1016/j.joca.2009.11.003

Englund, 2010, The role of biomechanics in the initiation and progression of OA of the knee, Best Pract. Res. Clin. Rheumatol., 24, 39, 10.1016/j.berh.2009.08.008

Roemer, 2009, The association of meniscal damage with joint effusion in persons without radiographic osteoarthritis: The Framingham and MOST osteoarthritis studies, Osteoarthr. Cartil., 17, 748, 10.1016/j.joca.2008.09.013

Crema, 2012, Factors associated with meniscal extrusion in knees with or at risk for osteoarthritis: The multicenter osteoarthritis study, Radiology, 264, 494, 10.1148/radiol.12110986

Stehling, 2012, Loading of the knee during 3.0 T MRI is associated with significantly increased medial meniscus extrusion in mild and moderate osteoarthritis, Eur. J. Radiol., 81, 1839, 10.1016/j.ejrad.2011.05.027

Runhaar, 2017, Baseline meniscal extrusion associated with incident knee osteoarthritis after 30 months in overweight and obese women, Osteoarthr. Cartil., 25, 1299, 10.1016/j.joca.2017.03.014

Liikavainio, 2008, Physical Function and Properties of Quadriceps Femoris Muscle in Men With Knee Osteoarthritis, Arch. Phys. Med. Rehabil., 89, 2185, 10.1016/j.apmr.2008.04.012

Alnahdi, 2012, Muscle impairments in patients with knee osteoarthritis, Sports Health, 4, 284, 10.1177/1941738112445726

Kim, J.-R., Yoo, J., and Kim, H. (2018). Therapeutics in Osteoarthritis Based on an Understanding of Its Molecular Pathogenesis. Int. J. Mol. Sci., 19.

Roos, 2011, Muscle weakness, afferent sensory dysfunction and exercise in knee osteoarthritis, Nat. Rev. Rheumatol., 7, 57, 10.1038/nrrheum.2010.195

Raynauld, 2015, Magnetic Resonance Imaging-Assessed Vastus Medialis Muscle Fat Content and Risk for Knee Osteoarthritis Progression: Relevance From a Clinical Trial, Arthritis Care Res., 67, 1406, 10.1002/acr.22590

Teichtahl, 2015, Vastus medialis fat infiltration—A modifiable determinant of knee cartilage loss, Osteoarthr. Cartil., 23, 2150, 10.1016/j.joca.2015.06.016

Krishnasamy, 2018, The role of skeletal muscle in the pathophysiology and management of knee osteoarthritis, Rheumatology, 57, iv22, 10.1093/rheumatology/kex515

Rothrauff, 2019, Anatomic ACL reconstruction reduces risk of post-traumatic osteoarthritis: A systematic review with minimum 10-year follow-up, Knee Surg. Sport Traumatol. Arthrosc., 28, 1072, 10.1007/s00167-019-05665-2

Wang, 2012, Increase in vastus medialis cross-sectional area is associated with reduced pain, cartilage loss, and joint replacement risk in knee osteoarthritis, Arthritis Rheum., 64, 3917, 10.1002/art.34681

Mobasheri, 2015, Biomarkers of (osteo)arthritis, Biomarkers, 20, 513, 10.3109/1354750X.2016.1140930

Boehme, K.A., and Rolauffs, B. (2018). Onset and Progression of Human Osteoarthritis—Can Growth Factors, Inflammatory Cytokines, or Differential miRNA Expression Concomitantly Induce Proliferation, ECM Degradation, and Inflammation in Articular Cartilage?. Int. J. Mol. Sci., 19.

Goldring, 2007, Osteoarthritis, J. Cell. Physiol., 213, 626, 10.1002/jcp.21258

Wojdasiewicz, 2014, The Role of Inflammatory and Anti-Inflammatory Cytokines in the Pathogenesis of Osteoarthritis, Mediat. Inflamm., 2014, 1, 10.1155/2014/561459

Mathiessen, 2017, Synovitis in osteoarthritis: Current understanding with therapeutic implications, Arthritis Res. Ther., 19, 1, 10.1186/s13075-017-1229-9

Nguyen, L., Sharma, A., Chakraborty, C., Saibaba, B., Ahn, M.-E., and Lee, S.-S. (2017). Review of Prospects of Biological Fluid Biomarkers in Osteoarthritis. Int. J. Mol. Sci., 18.

Mabey, 2016, Plasma and synovial fluid inflammatory cytokine profiles in primary knee osteoarthritis, Biomarkers, 21, 639, 10.3109/1354750X.2016.1171907

Zhu, 2017, Cross-sectional and longitudinal associations between serum inflammatory cytokines and knee bone marrow lesions in patients with knee osteoarthritis, Osteoarthr. Cartil., 25, 499, 10.1016/j.joca.2016.10.024

Yang, 2016, Expression profile of cytokines and chemokines in osteoarthritis patients: Proinflammatory roles for CXCL8 and CXCL11 to chondrocytes, Int. Immunopharmacol., 40, 16, 10.1016/j.intimp.2016.08.005

Kassner, 2007, COMP acts as a catalyst in collagen fibrillogenesis, J. Biol. Chem., 282, 31166, 10.1074/jbc.M705735200

Ruan, 2018, Associations between knee structural measures, circulating inflammatory factors and MMP13 in patients with knee osteoarthritis, Osteoarthr. Cartil., 26, 1063, 10.1016/j.joca.2018.05.003

Goldring, 2004, The Regulation of Chondrocyte Function by Proinflammatory Mediators, Clin. Orthop. Relat. Res., 427, S37, 10.1097/01.blo.0000144484.69656.e4

Yang, 2019, Up-regulated HIF-2α contributes to the Osteoarthritis development through mediating the primary cilia loss, Int. Immunopharmacol., 75, 105762, 10.1016/j.intimp.2019.105762

Alaaeddine, 2001, Production of the chemokine RANTES by articular chondrocytes and role in cartilage degradation, Arthritis Rheum., 44, 1633, 10.1002/1529-0131(200107)44:7<1633::AID-ART286>3.0.CO;2-Z

Akeson, G., and Malemud, C. (2017). A Role for Soluble IL-6 Receptor in Osteoarthritis. J. Funct. Morphol. Kinesiol., 2.

Latourte, 2017, Systemic inhibition of IL-6/Stat3 signalling protects against experimental osteoarthritis, Ann. Rheum. Dis., 76, 748, 10.1136/annrheumdis-2016-209757

Qu, 2015, Correlation between interleukin-6 expression in articular cartilage bone and osteoarthritis, Genet. Mol. Res., 14, 14189, 10.4238/2015.November.13.2

Pearson, 2017, IL-6 secretion in osteoarthritis patients is mediated by chondrocyte-synovial fibroblast cross-talk and is enhanced by obesity, Sci. Rep., 7, 3451, 10.1038/s41598-017-03759-w

Saxne, 2011, The role of the cartilage matrix in osteoarthritis, Nat. Rev. Rheumatol., 7, 50, 10.1038/nrrheum.2010.198

Giordano, 2020, Serum Inflammatory Markers in Patients with Knee Osteoarthritis: A Proteomic Approach, Clin. J. Pain., 36, 229, 10.1097/AJP.0000000000000804

Larsson, 2009, Synovial fluid level of aggrecan ARGS fragments is a more sensitive marker of joint disease than glycosaminoglycan or aggrecan levels: A cross-sectional study, Arthritis Res. Ther., 11, R92, 10.1186/ar2735

Zhou, 2016, The relationship between HIF-2α and VEGF with radiographic severity in the primary osteoarthritic knee, Yonsei Med. J., 57, 735, 10.3349/ymj.2016.57.3.735

Venkatesan, 2013, rAAV-mediated overexpression of TGF-β stably restructures human osteoarthritic articular cartilage in situ, J. Transl. Med., 11, 211, 10.1186/1479-5876-11-211

Carballo, C.B., Coelho, T.R.P., de Holanda Afonso, R.C., de O. Faria, J.C., Alves, T., Monte, S.M., Ventura Matioszek, G.M., Moura-Neto, V., and de Brito, J.M. (2018). Osteoarthritic Synovial Fluid and TGF-β1 Induce Interleukin-18 in Articular Chondrocytes. Cartilage, 194760351879614.

Ruiz, 2020, TGFBI secreted by mesenchymal stromal cells ameliorates osteoarthritis and is detected in extracellular vesicles, Biomaterials, 226, 119544, 10.1016/j.biomaterials.2019.119544

Zhen, 2013, Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis, Nat. Med., 19, 704, 10.1038/nm.3143

Waly, 2017, IL-10 and TGF-β: Roles in chondroprotective effects of Glucosamine in experimental Osteoarthritis?, Pathophysiology, 24, 45, 10.1016/j.pathophys.2017.02.005

Heard, 2014, A computational method to differentiate normal individuals, osteoarthritis and rheumatoid arthritis patients using serum biomarkers, J. R. Soc. Interface, 11, 20140428, 10.1098/rsif.2014.0428

Kisand, 2018, New insights into the natural course of knee osteoarthritis: Early regulation of cytokines and growth factors, with emphasis on sex-dependent angiogenesis and tissue remodeling. A pilot study, Osteoarthr. Cartil., 26, 1045, 10.1016/j.joca.2018.05.009

Leung, 2017, Synovial fluid pro-inflammatory profile differs according to the characteristics of knee pain, Osteoarthr. Cartil., 25, 1420, 10.1016/j.joca.2017.04.001

Nees, T.A., Rosshirt, N., Zhang, J.A., Reiner, T., Sorbi, R., Tripel, E., Walker, T., Schiltenwolf, M., Hagmann, S., and Moradi, B. (2019). Synovial Cytokines Significantly Correlate with Osteoarthritis-Related Knee Pain and Disability: Inflammatory Mediators of Potential Clinical Relevance. J. Clin. Med., 8.

Grieshaber-Bouyer, R., Kämmerer, T., Rosshirt, N., Nees, T.A., Koniezke, P., Tripel, E., Schiltenwolf, M., Kirsch, J., Hagmann, S., and Moradi, B. (2019). Divergent Mononuclear Cell Participation and Cytokine Release Profiles Define Hip andKnee Osteoarthritis. J. Clin. Med., 8.

Ren, 2018, Serum and synovial fluid cytokine profiling in hip osteoarthritis: Distinct from knee osteoarthritis and correlated with pain, BMC Musculoskelet. Disord., 19, 1, 10.1186/s12891-018-1955-4

(2020, May 04). WHO | Obesity. Available online: https://www.who.int/topics/obesity/en/.

2019, Obesity: Global epidemiology and pathogenesis, Nat. Rev. Endocrinol., 15, 288, 10.1038/s41574-019-0176-8

Murphy, 2008, Lifetime risk of symptomatic knee osteoarthritis, Arthritis Care Res., 59, 1207, 10.1002/art.24021

Powell, 2005, Obesity: A preventable risk factor for large joint osteoarthritis which may act through biomechanical factors, Br. J. Sports Med., 39, 4, 10.1136/bjsm.2004.011841

Aspden, 2011, Obesity punches above its weight in osteoarthritis, Nat. Rev. Rheumatol., 7, 65, 10.1038/nrrheum.2010.123

Sharma, 2001, The role of knee alignment in disease progression and functional decline in knee osteoarthritis, J. Am. Med. Assoc., 286, 188, 10.1001/jama.286.2.188

Urban, 2018, The role of fat and inflammation in the pathogenesis and management of osteoarthritis, Rheumatology, 57, iv10, 10.1093/rheumatology/kex399

Kluzek, 2015, Adipokines as potential prognostic biomarkers in patients with acute knee injury, Biomarkers, 20, 519

Collins, 2018, Obesity alters the in vivo mechanical response and biochemical properties of cartilage as measured by MRI, Arthritis Res. Ther., 20, 232, 10.1186/s13075-018-1727-4

Boyce, 2019, The outcomes of total knee arthroplasty in morbidly obese patients: A systematic review of the literature, Arch. Orthop. Trauma Surg., 139, 553, 10.1007/s00402-019-03127-5

Choi, 2019, Genome Engineering for Osteoarthritis: From Designer Cells to Disease-Modifying Drugs, Tissue Eng. Regen. Med., 16, 335, 10.1007/s13770-018-0172-4

Shen, 2017, DNA methyltransferase 3b regulates articular cartilage homeostasis by altering metabolism, JCI Insight, 2, e93612, 10.1172/jci.insight.93612

Cao, 2014, Decreased histone deacetylase 4 is associated with human osteoarthritis cartilage degeneration by releasing histone deacetylase 4 inhibition of runt-related transcription factor-2 and increasing osteoarthritis-related genes: A novel mechanism of human ost, Arthritis Res. Ther., 16, 491, 10.1186/s13075-014-0491-3

Richard, 2020, Evolutionary Selection and Constraint on Human Knee Chondrocyte Regulation Impacts Osteoarthritis Risk, Cell, 181, 362, 10.1016/j.cell.2020.02.057

Miyamoto, 2007, A functional polymorphism in the 5′ UTR of GDF5 is associated with susceptibility to osteoarthritis, Nat. Genet., 39, 529, 10.1038/2005

Zengini, 2018, Genome-wide analyses using UK Biobank data provide insights into the genetic architecture of osteoarthritis, Nat. Genet., 50, 549, 10.1038/s41588-018-0079-y

Liu, 2018, Chromatin accessibility landscape of articular knee cartilage reveals aberrant enhancer regulation in osteoarthritis, Sci. Rep., 8, 15499, 10.1038/s41598-018-33779-z

Yu, 2015, MicroRNAs’ Involvement in Osteoarthritis and the Prospects for Treatments, Evid. Based Complement. Altern. Med., 2015, 1

Zhang, 2017, Role of MicroRNA in Osteoarthritis, J. Arthritis, 06, 239, 10.4172/2167-7921.1000239

Zhang, 2017, MiR-146a facilitates osteoarthritis by regulating cartilage homeostasis via targeting Camk2d and Ppp3r2, Cell Death Dis., 8, 1

Ramos, 2019, TranslaTional science RNA sequencing data integration reveals an miRNA interactome of osteoarthritis cartilage, Ann. Rheum. Dis., 78, 270, 10.1136/annrheumdis-2018-213882

Miyaki, 2012, Macro view of microRNA function in osteoarthritis, Nat. Rev. Rheumatol., 8, 543, 10.1038/nrrheum.2012.128

Grigelioniene, 2019, Gain-of-function mutation of microRNA-140 in human skeletal dysplasia, Nat. Med., 25, 583, 10.1038/s41591-019-0353-2

Hu, 2019, MicroRNA-455-3p promotes TGF-β signaling and inhibits osteoarthritis development by directly targeting PAK2, Exp. Mol. Med., 51, 1, 10.1038/s12276-019-0322-3

Hu, 2017, MicroRNA-145 attenuates TNF-α-driven cartilage matrix degradation in osteoarthritis via direct suppression of MKK4, Cell Death Dis., 8, e3140, 10.1038/cddis.2017.522

Ragni, 2019, miR-22-5p and miR-29a-5p Are Reliable Reference Genes for Analyzing Extracellular Vesicle-Associated miRNAs in Adipose-Derived Mesenchymal Stem Cells and Are Stable under Inflammatory Priming Mimicking Osteoarthritis Condition, Stem Cell Rev. Rep., 15, 743, 10.1007/s12015-019-09899-y

Vicente, 2016, Deregulation and therapeutic potential of microRNAs in arthritic diseases, Nat. Rev. Rheumatol., 12, 211, 10.1038/nrrheum.2015.162

Huang, 2019, The microRNAs miR-204 and miR-211 maintain joint homeostasis and protect against osteoarthritis progression, Nat. Commun., 10, 1

Kang, 2019, Stress-activated miR-204 governs senescent phenotypes of chondrocytes to promote osteoarthritis development, Sci. Transl. Med., 11, eaar6659, 10.1126/scitranslmed.aar6659

Bianchi, M., Renzini, A., Adamo, S., and Moresi, V. (2017). Coordinated Actions of MicroRNAs with other Epigenetic Factors Regulate Skeletal Muscle Development and Adaptation. Int. J. Mol. Sci., 18.

Grover, 2015, Benefits of antioxidant supplements for knee osteoarthritis: Rationale and reality, Nutr. J., 15, 1, 10.1186/s12937-015-0115-z

Blanco, 2011, The role of mitochondria in osteoarthritis, Nat. Rev. Rheumatol., 7, 161, 10.1038/nrrheum.2010.213

Blanco, 2020, Mitochondrial Genetics and Epigenetics in Osteoarthritis, Front. Genet., 10, 1335, 10.3389/fgene.2019.01335

Andia, 2013, Platelet-rich plasma for managing pain and inflammation in osteoarthritis, Nat. Rev. Rheumatol., 9, 721, 10.1038/nrrheum.2013.141

Andia, 2019, Classification of platelet concentrates (Platelet-Rich Plasma-PRP, Platelet-Rich Fibrin-PRF) for topical and infiltrative use in orthopedic and sports medicine: Current consensus, clinical implications and perspectives, Muscle Ligaments Tendons J., 4, 3, 10.32098/mltj.01.2014.02

Wu, 2020, Platelet-rich plasma versus hyaluronic acid in knee osteoarthritis: A meta-analysis with the consistent ratio of injection, J. Orthop. Surg., 28, 1, 10.1177/2309499019887660

Magalhaes, 2019, Platelet-rich plasma in osteoarthritis treatment: Review of current evidence, Ther. Adv. Chronic Dis., 10, 1

Sundaram, 2019, Are Subchondral Intraosseous Injections Effective and Safe for the Treatment of Knee Osteoarthritis? A Systematic Review, J. Knee Surg., 32, 1046, 10.1055/s-0039-1677792

Delgado, 2019, Treating Severe Knee Osteoarthritis with Combination of Intra-Osseous and Intra-Articular Infiltrations of Platelet-Rich Plasma: An Observational Study, Cartilage, 10, 245, 10.1177/1947603518756462

Ponchel, 2015, Changes in peripheral blood immune cell composition in osteoarthritis, Osteoarthr. Cartil., 23, 1870, 10.1016/j.joca.2015.06.018

Daghestani, 2015, Inflammatory biomarkers in osteoarthritis, Osteoarthr. Cartil., 23, 1890, 10.1016/j.joca.2015.02.009

Caplan, 2019, Medicinal signalling cells: They work, so use them, Nature, 566, 39, 10.1038/d41586-019-00490-6

Caplan, 2015, Body Management: Mesenchymal Stem Cells Control the Internal Regenerator, Stem Cells Transl. Med., 4, 695, 10.5966/sctm.2014-0291

Caplan, 2010, What’s in a Name?, Tissue Eng. Part A, 16, 2415, 10.1089/ten.tea.2010.0216

McGonagle, 2017, Native joint-resident mesenchymal stem cells for cartilage repair in osteoarthritis, Nat. Rev. Rheumatol., 13, 719, 10.1038/nrrheum.2017.182

Saris, 2015, Direct cell-cell contact with chondrocytes is a key mechanism in multipotent mesenchymal stromal cell-mediated chondrogenesis, Tissue Eng. Part A, 21, 2536, 10.1089/ten.tea.2014.0673

Mancuso, 2019, Mesenchymal Stem Cell Therapy for Osteoarthritis: The Critical Role of the Cell Secretome, Front. Bioeng. Biotechnol., 7, 9, 10.3389/fbioe.2019.00009

Pittenger, 2019, Mesenchymal stem cell perspective: Cell biology to clinical progress, Npj Regen. Med., 4, 22, 10.1038/s41536-019-0083-6

Ren, 2008, Mesenchymal Stem Cell-Mediated Immunosuppression Occurs via Concerted Action of Chemokines and Nitric Oxide, Cell Stem Cell, 2, 141, 10.1016/j.stem.2007.11.014

Wang, 2017, Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix, Stem Cell Res. Ther., 8, 189, 10.1186/s13287-017-0632-0

Kim, 2019, Intra-articular injection of mesenchymal stem cells for clinical outcomes and cartilage repair in osteoarthritis of the knee: A meta-analysis of randomized controlled trials, Arch. Orthop. Trauma Surg., 139, 971, 10.1007/s00402-019-03140-8

Caplan, 2011, The MSC: An Injury Drugstore, Cell Stem Cell, 9, 11, 10.1016/j.stem.2011.06.008

Hass, 2011, Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC, Cell Commun. Signal., 9, 12, 10.1186/1478-811X-9-12

Hassan, 2004, Adult bone-marrow stem cells and their potential in medicine, J. R. Soc. Med., 97, 465, 10.1177/0141076809701003

Chahal, 2019, Bone Marrow Mesenchymal Stromal Cell Treatment in Patients with Osteoarthritis Results in Overall Improvement in Pain and Symptoms and Reduces Synovial Inflammation, Stem Cells Transl. Med., 8, 746, 10.1002/sctm.18-0183

Gupta, 2016, Efficacy and safety of adult human bone marrow-derived, cultured, pooled, allogeneic mesenchymal stromal cells (Stempeucel®): Preclinical and clinical trial in osteoarthritis of the knee joint, Arthritis Res. Ther., 18, 301, 10.1186/s13075-016-1195-7

Vega, 2015, Treatment of knee osteoarthritis with allogeneic bone marrow mesenchymal stem cells: A randomized controlled trial, Transplantation, 99, 1681, 10.1097/TP.0000000000000678

Awad, 2019, Meta-Analysis and Evidence Base for the Efficacy of Autologous Bone Marrow Mesenchymal Stem Cells in Knee Cartilage Repair: Methodological Guidelines and Quality Assessment, Stem Cells Int., 2019, 1, 10.1155/2019/3826054

Maumus, 2018, Cellules souches mésenchymateuses et médecine régénératrice, Méd. Sci., 34, 1092

Bodiroga-Vukobrat, N., Rukavina, D., Pavelić, K., and Sander, G.G. (2019). The Future of Cartilage Repair. Personalized Medicine in Healthcare Systems: Legal, Medical and Economic Implications, Springer International Publishing.

Hudetz, D., Borić, I., Rod, E., Jeleč, Ž., Radić, A., Vrdoljak, T., Skelin, A., Lauc, G., Trbojević-Akmačić, I., and Plečko, M. (2017). The Effect of Intra-articular Injection of Autologous Microfragmented Fat Tissue on Proteoglycan Synthesis in Patients with Knee Osteoarthritis. Genes, 8.

Hudetz, 2019, Early results of intra-articular micro-fragmented lipoaspirate treatment in patients with late stages knee osteoarthritis: A prospective study, Croat. Med. J., 60, 227, 10.3325/cmj.2019.60.227

Polancec, D., Zenic, L., Hudetz, D., Boric, I., Jelec, Z., Rod, E., Vrdoljak, T., Skelin, A., Plecko, M., and Turkalj, M. (2019). Immunophenotyping of a Stromal Vascular Fraction from Microfragmented Lipoaspirate Used in Osteoarthritis Cartilage Treatment and Its Lipoaspirate Counterpart. Genes, 10.

Borić, I., Hudetz, D., Rod, E., Jeleč, Ž., Vrdoljak, T., Skelin, A., Polašek, O., Plečko, M., Trbojević-Akmačić, I., and Lauc, G. (2019). A 24-Month Follow-Up Study of the Effect of Intra-Articular Injection of Autologous Microfragmented Fat Tissue on Proteoglycan Synthesis in Patients with Knee Osteoarthritis. Genes, 10.

Russo, 2018, Autologous micro-fragmented adipose tissue for the treatment of diffuse degenerative knee osteoarthritis: An update at 3 year follow-up, J. Exp. Orthop., 5, 52, 10.1186/s40634-018-0169-x

Mautner, 2019, Functional Outcomes Following Microfragmented Adipose Tissue Versus Bone Marrow Aspirate Concentrate Injections for Symptomatic Knee Osteoarthritis, Stem Cells Transl. Med., 8, 1149, 10.1002/sctm.18-0285

Russo, 2017, Autologous and micro-fragmented adipose tissue for the treatment of diffuse degenerative knee osteoarthritis, J. Exp. Orthop., 4, 33, 10.1186/s40634-017-0108-2

Peretti, 2018, Evaluation of the use of autologous micro-fragmented adipose tissue in the treatment of knee osteoarthritis: Preliminary results of a randomized controlled trial, J. Biol. Regul. Homeost. Agents, 32, 193

Freitag, 2019, Adipose-derived mesenchymal stem cell therapy in the treatment of knee osteoarthritis: A randomized controlled trial, Regen. Med., 14, 213, 10.2217/rme-2018-0161

Yun, 2016, Adipose-derived mesenchymal stem cells and platelet-rich plasma synergistically ameliorate the surgical-induced osteoarthritis in Beagle dogs, J. Orthop. Surg. Res., 11, 9, 10.1186/s13018-016-0342-9

Pak, J., Chang, J.-J., Lee, J.H., and Lee, S.H. (2013). Safety reporting on implantation of autologous adipose tissue-derived stem cells with platelet-rich plasma into human articular joints. BMC Musculoskelet. Disord., 14.

Jayaram, 2019, Bone Marrow-Derived and Adipose-Derived Mesenchymal Stem Cell Therapy in Primary Knee Osteoarthritis: A Narrative Review, PM&R, 11, 177, 10.1016/j.pmrj.2018.06.019

Shariatzadeh, 2019, The efficacy of different sources of mesenchymal stem cells for the treatment of knee osteoarthritis, Cell Tissue Res., 378, 399, 10.1007/s00441-019-03069-9

Wu, 2020, Extracellular vesicles: Potential role in osteoarthritis regenerative medicine, J. Orthop. Transl., 21, 73

Lener, 2015, Applying extracellular vesicles based therapeutics in clinical trials—An ISEV position paper, J. Extracell. Vesicles, 4, 30087, 10.3402/jev.v4.30087

Morrison, 2017, Mesenchymal Stromal Cells Modulate Macrophages in Clinically Relevant Lung Injury Models by Extracellular Vesicle Mitochondrial Transfer, Am. J. Respir. Crit. Care Med., 196, 1275, 10.1164/rccm.201701-0170OC

Tan, 2020, Mesenchymal Stem Cell Exosomes for Cartilage Regeneration: A Systematic Review of Preclinical In Vivo Studies, Tissue Eng. Part B Rev., 2019, 0326

Sun, 2008, Transforming Growth Factor-Beta-Regulated miR-24 Promotes Skeletal Muscle Differentiation, Nucleic Acids Res., 36, 2690, 10.1093/nar/gkn032

Fleury, 2014, Extracellular Vesicles as Therapeutic Tools in Cardiovascular Diseases, Front. Immunol., 5, 370, 10.3389/fimmu.2014.00370

Goldie, 2014, Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons, Nucleic Acids Res., 42, 9195, 10.1093/nar/gku594

Allan, 2016, Identification of clinical phenotypes in knee osteoarthritis: A systematic review of the literature, BMC Musculoskelet. Disord., 17, 1

Dell’Isola, A., Steultjens, M., Dell’Isola, A., Steultjens, M., Isola, A.D., and Steultjens, M. (2018). Classification of patients with knee osteoarthritis in clinical phenotypes: Data from the osteoarthritis initiative. PLoS ONE, 13.

Kubassova, 2019, Osteoarthritis phenotypes and novel therapeutic targets, Biochem. Pharmacol., 165, 41, 10.1016/j.bcp.2019.02.037

Chen, 2019, Fibroblast growth factors: Potential novel targets for regenerative therapy of osteoarthritis, Chin. J. Physiol., 62, 2, 10.4103/CJP.CJP_11_19

Meloni, 2019, Recombinant human FGF18 preserves depth-dependent mechanical inhomogeneity in articular cartilage, Eur. Cells Mater., 38, 23, 10.22203/eCM.v038a03

Eckstein, 2020, Intra-articular sprifermin reduces cartilage loss in addition to increasing cartilage gain independent of location in the femorotibial joint: Post-hoc analysis of a randomised, placebo-controlled phase II clinical trial, Ann. Rheum. Dis., 79, 525, 10.1136/annrheumdis-2019-216453

Hochberg, 2019, Effect of Intra-Articular Sprifermin vs Placebo on Femorotibial Joint Cartilage Thickness in Patients With Osteoarthritis, JAMA, 322, 1360, 10.1001/jama.2019.14735

Gigout, 2017, Sprifermin (rhFGF18) enables proliferation of chondrocytes producing a hyaline cartilage matrix, Osteoarthr. Cartil., 25, 1858, 10.1016/j.joca.2017.08.004

Gregori, 2018, Association of Pharmacological Treatments With Long-term Pain Control in Patients With Knee Osteoarthritis, JAMA, 320, 2564, 10.1001/jama.2018.19319

Scharf, 2006, Bone morphogenetic protein 7 (bmp-7) stimulates Proteoglycan synthesis in human osteoarthritic chondrocytes in vitro, Biomed. Pharmacother., 60, 639, 10.1016/j.biopha.2006.09.001

(2009). Bone morphogenetic protein 7 inhibits cartilage degradation in a rabbit model of osteoarthritis. Nat. Clin. Pract. Rheumatol., 5, 4.

Hayashi, 2008, Weekly intra-articular injections of bone morphogenetic protein-7 inhibits osteoarthritis progression, Arthritis Res. Ther., 10, R118, 10.1186/ar2521

Hunter, D.J., Pike, M.C., Jonas, B.L., Kissin, E., Krop, J., and McAlindon, T. (2010). Phase 1 safety and tolerability study of BMP-7 in symptomatic knee osteoarthritis. BMC Musculoskelet. Disord., 11.

Mimpen, 2019, Chondroprotective Factors in Osteoarthritis: A Joint Affair, Curr. Rheumatol. Rep., 21, 1, 10.1007/s11926-019-0840-y

Oo, 2018, Disease-modifying drugs in osteoarthritis: Current understanding and future therapeutics, Expert Opin. Emerg. Drugs, 23, 331, 10.1080/14728214.2018.1547706

Shepard, 2017, Developments in therapy with monoclonal antibodies and related proteins, Clin. Med. J. R. Coll. Physicians Lond., 17, 220

Das, 2018, Blockade of vascular endothelial growth factor receptor-1 (Flt-1), reveals a novel analgesic for osteoarthritis-induced joint pain, Gene Rep., 11, 94, 10.1016/j.genrep.2018.03.008

Kan, S.-L., Li, Y., Ning, G.-Z., Yuan, Z.-F., Chen, L.-X., Bi, M.-C., Sun, J.-C., and Feng, S.-Q. (2016). Tanezumab for Patients with Osteoarthritis of the Knee: A Meta-Analysis. PLoS ONE, 11.

Schnitzer, 2019, Effect of Tanezumab on Joint Pain, Physical Function, and Patient Global Assessment of Osteoarthritis among Patients with Osteoarthritis of the Hip or Knee: A Randomized Clinical Trial, JAMA J. Am. Med. Assoc., 322, 37, 10.1001/jama.2019.8044

Tiseo, 2014, Fasinumab (REGN475), an antibody against nerve growth factor for the treatment of pain: Results from a double-blind, placebo-controlled exploratory study in osteoarthritis of the knee, Pain, 155, 1245, 10.1016/j.pain.2014.03.018

Gow, 2015, Safety, tolerability, pharmacokinetics, and efficacy of AMG 403, a human anti-nerve growth factor monoclonal antibody, in two phase I studies with healthy volunteers and knee osteoarthritis subjects, Arthritis Res. Ther., 17, 282, 10.1186/s13075-015-0797-9

Miller, 2016, Therapeutic effects of an anti-ADAMTS-5 antibody on joint damage and mechanical allodynia in a murine model of osteoarthritis, Osteoarthr. Cartil., 24, 299, 10.1016/j.joca.2015.09.005

Nixon, 2018, Disease-Modifying Osteoarthritis Treatment With Interleukin-1 Receptor Antagonist Gene Therapy in Small and Large Animal Models, Arthritis Rheumatol., 70, 1757, 10.1002/art.40668

Gersbach, 2019, The next generation of CRISPR–Cas technologies and applications, Nat. Rev. Mol. Cell Biol., 20, 490, 10.1038/s41580-019-0131-5

Zhao, 2019, Exploration of CRISPR/Cas9-based gene editing as therapy for osteoarthritis, Ann. Rheum. Dis., 78, 676, 10.1136/annrheumdis-2018-214724