Kinetic Modeling of cometabolic degradation of ethanethiol and phenol by Ralstonia eutropha
Tóm tắt
Cometabolism, as a complex phenomenon in microbial world, is a special mechanism for transformation of many compounds of environmental and toxicological significance. Several models have been proposed to describe the cometabolic transformations of non-growth substrates in the absence or presence of growth substrates. In this study, a model was proposed to simulate the degradation kinetics of phenol and ethanethiol (ET) by a pure culture of Ralstonia eutropha, including the effects of cell growth, endogenous cell decay, loss of transformation activity, competitive inhibition between growth and non-growth substrates, and self-inhibition of non-growth substrate. The model parameters were determined independently and were then used for evaluating the applicability of the model by comparing experimental data with model predictions. The model successfully predicted ET transformation and phenol utilization for a wide range of concentrations of ET (0 ∼ 40 mg/L) and phenol (0 ∼ 100 mg/L).
Tài liệu tham khảo
Chang, W. K. and C. S. Criddle (1997) Experimental evaluation of a model for cometabolism: Prediction of simultaneous degradation of trichloroethylene and methane by a methanotrophic mixed culture. Biotechnol. Bioeng. 56: 492–501.
Chen, Y. M., T. F. Lin, C. Huang, J. C. Lin, and F. M. Hsieh (2007) Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida. J. Hazard. Mater. 148: 660–670.
Criddle, C. S. (1993) The kinetics of cometabolism. Biotechnol. Bioeng. 41: 1048–1056.
Leadbetter, E. R. and J. W. Foster (1958) Studies on methane-utilizing bacteria. Archiv fur mikrobiologie 30: 91–118.
Alvarez-Cohen, L. and P. L. McCarty (1991) Effects of toxicity, aeration, and reductant supply on TCE transformation by a mixed methanotrophic culture. Appl. Environ. Microbiol. 57: 228–235.
Alvarez-Cohen, L. and P. L. McCarty (1991b) Product toxicity and cometabolic inhibition modeling of chloroform and trichloroethylene transformation by methanotrophic resting cells. Appl. Environ. Microbiol. 57: 1031–1037.
Kim, M. H. and O. J. Hao (1999) Cometabolic degradation of chlorophenols by Acinetobacter species. Water Res. 33: 562–574.
Elango, V. K., A. S. Liggenstoffer, and B. Z. Fathepure (2006) Biodegradation of vinyl chloride and cis-dichloroethene by a Ralstonia sp. strain TRW-1. Appl. Microbiol. Biotechnol. 72: 1270–1275.
Chen, Y. M., T. F. Lin, C. Huang, and J. C. Lin (2008) Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida. Chemosphere 72: 1671–1680.
Semprini, L., R. L. Ely, and M. M. Lang (1998) Modeling of cometabolism for the in situ biodegradation and trichloroethylene and other chlorinated aliphatic hydrocarbons. pp. 89–134. In: S. K Sikdar and R. L. Irvine (eds.). Bioremediation: Principles and Practice Vol. (1) Fundamentals and Applications. Technomic Publishing Co., Lancaster, PA.
Alvarez-Cohen, L. and G. E. Speitel Jr. (2001) Kinetics of aerobic cometabolism of chlorinated solvents. Biodegradation 12: 105–126.
Ely, R. L., K. J. Williamson, R. B. Gunether, M. R. Hyman and D. J. Arp (1995) A cometabolic kinetics model incorporating enzyme-inhibition, inactivation, and recovery: 1. Model development, analysis, and testing. Biotechnol. Bioeng. 46: 218–231.
Ely, R. L., M. R. Hyman, D. J. Arp, R. B. Gunether, and K. J. Williamson (1995) A cometabolic kinetics model incorporating enzyme-inhibition, inactivation, and recovery: 2. Trichloroethylene degradation experiments. Biotechnol. Bioeng. 46: 232–245.
Chang, H. L. and L. Alvarez-Cohen (1995) Model for the cometabolic biodegradation of chlorinated organic. Environ. Sci. Technol. 29: 2357–2367.
Hao, O. J., M. H. Kim, E. A. Seagren, and H. Kim (2002) Kinetics of phenol and chlorophenol utilization by Acinetobacter species. Chemosphere 46: 797–807.
Wan, S., G. Li, and T. An (2011) Treatment performance of volatile organic sulfide compounds by the immobilized microorganisms of B350 group in a biotrickling filter. J. Chem. Technol. Biotechnol. 86: 1166–1176.
Kang, J. W., C. M. Jeong, N. J. Kim, M. I. Kim, and H. N. Chang (2010) On-site removal of H2S from biogas produced by food waste using an aerobic sludge biofilter for steam reforming processing. Biotechnol. Bioproc. Eng. 15: 505–511.
Wan, S., G. Li, T. An, B. Guo, L. Sun, L. Zu, and A. Ren (2010) Biodegradation of ethanethiol in aqueous medium by a new Lysinibacillus sphaericus strain RG-1 isolated from activated sludge. Biodegradation 21: 1057–1066.
An, T., S. Wan, G. Li, L. Sun, and B. Guo (2010) Comparison of the removal of ethanethiol in twin-biotrickling filters inoculated with strain RG-1 and B350 mixed microorganisms. J. Hazard. Mater. 183: 372–380.
Barreiros, L., A. Fernandes, A. C. Silva Ferreira, P. Helena, M. M. S. M. Bastos, C. M. Manaia, and O. C. Nunes (2008) New insights into a bacterial metabolic and detoxifying association responsible for the mineralization of the thiocarbamate herbicide molinate. Microbiol. 154: 1038–1046.
Suylen, G. M. H., G. C. Stefess, and J. G. Kuenen (1986) Chemolithotrophic potential of a Hyphomicrobium species, capable of growth on methylated sulphur compounds. Arch. Microbiol. 146: 192–198.
Smith, N. A. and D. P. Kelly (1988) Mechanism of oxidation of Dimethyl disulphide by Thiobacillus thioparus Strain E6. J. Gene. Microbiol. 134: 3031–3039.
Gould, W. D. and T. Kanagawa (1992) Purification and properties of methyl mercaptan oxidase from Thiobacillus thioparus TK-m. J. Gene. Microbiol. 138: 217–221.
Suylen, G. M. H., P. J. Large, J. P. Van Dijken, and J. G. Kuenen (1987) Methyl mercaptan oxidase, a key enzyme in the metabolism of methylated sulphur compounds by Hyphomicrobium EG. J. Gene. Microbiol. 133: 2989–2997.
Lomans, B. P., C. Van der Drift, A. Pol, and H. J. M. Op den Camp (2002) Microbial cycling of volatile organic sulfur compounds. Cell. Mol. Life. Sci. 59: 575–588.
Sedighi, M., F. Vahabzadeh, S. M. Zamir, and A. Naderifar (2013) Ethanethiol degradation by Ralstonia eutropha. Biotechnol. Bioproc. Eng. 18: 827–833.
Habibi, A. and F. Vahabzadeh (2013) Degradation of formaldehyde at high concentrations by phenol-adapted Ralstonia eutropha closely related to pink-pigmented facultative methylotrophs. J. Environ. Sci. Health A. Tox. Hazard. Subst. Environ. Eng. 48: 279–292.
Nickzad, A., A. Mogharei, A. Monazzami, H. Jamshidian, and F. Vahabzadeh (2012) Biodegradation of phenol by Ralstonia eutropha in a Kissiris-immobilized cell bioreactor. Water Environ. Res. 84: 626–634.
Salehi, Z., M. Sohrabi, F. Vahabzadeh, Sh. Fatemi, and Y. Kawase (2010) Modeling of p-nitrophenol biodegradation by Ralstonia eutropha via application of the substrate inhibition concept. J. Hazard. Mater. 177: 582–585.
Johnson, B. F. and R. Y. Stanier (1971) Dissimilation of aromatic compounds by Alcaligenes eutrophus. J. Bacteriol. 107: 468–475.
Leonard, D., C. B. Youssef, C. Destruhaut, N. D. Lindley, and L. Queinnec (1999) Phenol degradation by Ralstonia eutropha: Colorimetric determination of 2-hydroxy muconate semialdehyde accumulation to control feed strategy in fed-batch fermentations. Biotechnol. Bioeng. 65: 407–415.
Baily, J. E. and D. F. Ollis (1986) Biochemical Engineering Fundamentals. 2nd ed., Mc graw-Hill, Singapore.
Box, J. D. (1983) Investigation of the Folin-Ciocalteau phenol reagent for the determination of polyphenolic substances in natural waters. Water Res. 17: 511–525.
Kotturi, G., C. W. Robinson, and W. E. Innis (1991) Phenol degradation by a psychrotrophic strain of Pseudomonas putida. Appl. Microb. Biotechnol. 34: 539–543.
Pedersen, A. R. and E. Arvin (1999) The function of a toluene-degrading bacterial community in a waster gas trickling filter. Water Sci. Technol. 39: 131–137.
Futamata, H., S. Harayama, and K. Watanabe (2001) Diversity in kinetics of trichloroethylene-degrading bacteria. Appl. Microbiol. Biotechnol. 55: 248–253.
Futamata, H., Y. Nagano, K. Watanabe, and A. Hiraishi (2005) Unique kinetic properties of phenol degrading Variovarax strains responsible for efficient trichloroethylene degradation in a chemostat enrichment culture. Appl. Environ. Microbiol. 71: 904–911.