Kinase switching in mesenchymal-like non-small cell lung cancer lines contributes to EGFR inhibitor resistance through pathway redundancy
Tóm tắt
Từ khóa
Tài liệu tham khảo
Gupta GP, Massague J (2006) Cancer metastasis: building a framework. Cell 127(4):679–695. doi: 10.1016/j.cell.2006.11.001
Oft M, Peli J, Rudaz C et al (1996) TGF-beta1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev 10(19):2462–2477. doi: 10.1101/gad.10.19.2462
Perl AK, Wilgenbus P, Dahl U et al (1998) A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 392(6672):190–193. doi: 10.1038/32433
Brabletz T, Jung A, Spaderna S et al (2005) Opinion: migrating cancer stem cells—an integrated concept of malignant tumour progression. Nat Rev Cancer 5(9):744–749. doi: 10.1038/nrc1694
Christofori G (2006) New signals from the invasive front. Nature 441(7092):444–450. doi: 10.1038/nature04872
Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2(6):442–454. doi: 10.1038/nrc822
Matsumura T, Makino R, Mitamura K (2001) Frequent down-regulation of E-cadherin by genetic and epigenetic changes in the malignant progression of hepatocellular carcinomas. Clin Cancer Res 7(3):594–599
Yoshiura K, Kanai Y, Ochiai A et al (1995) Silencing of the E-cadherin invasion-suppressor gene by CpG methylation in human carcinomas. Proc Natl Acad Sci USA 92(16):7416–7419. doi: 10.1073/pnas.92.16.7416
Baumgart E, Cohen MS, Neto BS et al (2007) Identification and prognostic significance of an epithelial-mesenchymal transition expression profile in human bladder tumors. Clin Cancer Res 13(6):1685–1694. doi: 10.1158/1078-0432.CCR-06-2330
Willipinski-Stapelfeldt B, Riethdorf S, Assmann V et al (2005) Changes in cytoskeletal protein composition indicative of an epithelial-mesenchymal transition in human micrometastatic and primary breast carcinoma cells. Clin Cancer Res 11(22):8006–8014. doi: 10.1158/1078-0432.CCR-05-0632
Thomson S, Buck E, Petti F et al (2005) Epithelial to mesenchymal transition is a determinant of sensitivity of non-small-cell lung carcinoma cell lines and xenografts to epidermal growth factor receptor inhibition. Cancer Res 65(20):9455–9462. doi: 10.1158/0008-5472.CAN-05-1058
Witta SE, Gemmill RM, Hirsch FR et al (2006) Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer Res 66(2):944–950. doi: 10.1158/0008-5472.CAN-05-1988
Yauch RL, Januario T, Eberhard DA et al (2005) Epithelial versus mesenchymal phenotype determines in vitro sensitivity and predicts clinical activity of erlotinib in lung cancer patients. Clin Cancer Res 11(241):8686–8698. doi: 10.1158/1078-0432.CCR-05-1492
Buck E, Eyzaguirre A, Barr S et al (2007) Loss of homotypic cell adhesion by epithelial-mesenchymal transition or mutation limits sensitivity to epidermal growth factor receptor inhibition. Mol Cancer Ther 6(2):532–541. doi: 10.1158/1535-7163.MCT-06-0462
Shrader M, Pino MS, Brown G et al (2007) Molecular correlates of gefitinib responsiveness in human bladder cancer cells. Mol Cancer Ther 6(1):277–285. doi: 10.1158/1535-7163.MCT-06-0513
Frederick BA, Helfrich BA, Coldren CD et al (2007) Epithelial to mesenchymal transition predicts gefitinib resistance in cell lines of head and neck squamous cell carcinoma and non-small cell lung carcinoma. Mol Cancer Ther 6(6):1683–1691. doi: 10.1158/1535-7163.MCT-07-0138
Chakravarti A, Loeffler JS, Dyson NJ (2002) Insulin-like growth factor receptor I mediates resistance to anti-epidermal growth factor receptor therapy in primary human glioblastoma cells through continued activation of phosphoinositide 3-kinase signaling. Cancer Res 62(1):200–207
Jones HE, Goddard L, Gee JM et al (2004) Insulin-like growth factor-I receptor signalling and acquired resistance to gefitinib (ZD1839; Iressa) in human breast and prostate cancer cells. Endocr Relat Cancer 11(4):793–814. doi: 10.1677/erc.1.00799
Engelman JA, Zejnullahu K, Mitsudomi T et al (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316(5827):1039–1043. doi: 10.1126/science.1141478
Abdolzade-Bavil A, Hayes S, Goretzki L et al (2004) Convenient and versatile subcellular extraction procedure, that facilitates classical protein expression profiling and functional protein analysis. Proteomics 4(5):1397–1405. doi: 10.1002/pmic.200300710
Thelemann A, Petti F, Griffin G et al (2005) Phosphotyrosine signaling networks in epidermal growth factor receptor overexpressing squamous carcinoma cells. Mol Cell Proteomics 4(4):356–376. doi: 10.1074/mcp.M400118-MCP200
Petti F, Thelemann A, Kahler J et al (2005) Temporal quantitation of mutant Kit tyrosine kinase signaling attenuated by a novel thiophene kinase inhibitor OSI-930. Mol Cancer Ther 4(8):1186–1197. doi: 10.1158/1535-7163.MCT-05-0114
Ross PL, Huang YN, Marchese JN et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–1169. doi: 10.1074/mcp.M400129-MCP200
Shilov IV, Seymour SL, Patel AA et al (2007) The Paragon Algorithm: a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Mol Cell Proteomics 6(9):1638–1655
Bradshaw RA, Burlingame AL, Carr S et al (2006) Reporting protein identification data: the next generation of guidelines. Mol Cell Proteomics 5(5):787–788. doi: 10.1074/mcp.E600005-MCP200
Buck E, Eyzaguirre A, Haley JD et al (2006) Inactivation of Akt by the epidermal growth factor receptor inhibitor erlotinib is mediated by HER-3 in pancreatic and colorectal tumor cell lines and contributes to erlotinib sensitivity. Mol Cancer Ther 5(8):2051–2059. doi: 10.1158/1535-7163.MCT-06-0007
Heldin CH, Westermark B, Wasteson A (1981) Specific receptors for platelet-derived growth factor on cells derived from connective tissue and glia. Proc Natl Acad Sci USA 78(6):3664–3668. doi: 10.1073/pnas.78.6.3664
Garton AJ, Crew AP, Franklin M et al (2006) OSI-930: a novel selective inhibitor of Kit and kinase insert domain receptor tyrosine kinases with antitumor activity in mouse xenograft models. Cancer Res 66(2):1015–1024. doi: 10.1158/0008-5472.CAN-05-2873
Roberts WG, Whalen PM, Soderstrom E et al (2005) Antiangiogenic and antitumor activity of a selective PDGFR tyrosine kinase inhibitor, CP-673, 451. Cancer Res 65(3):957–966
Brown KA, Aakre ME, Gorska AE et al (2004) Induction by transforming growth factor-beta1 of epithelial to mesenchymal transition is a rare event in vitro. Breast Cancer Res 6(3):R215–R231. doi: 10.1186/bcr778
Peinado H, Olmeda D, Cano A (2007) Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7(6):415–428. doi: 10.1038/nrc2131
Sheehan KM, Gulmann C, Eichler GS et al (2007) Signal pathway profiling of epithelial and stromal compartments of colonic carcinoma reveals epithelial-mesenchymal transition. Oncogene 27(3):323–331
Vega S, Morales AV, Ocana OH et al (2004) Snail blocks the cell cycle and confers resistance to cell death. Genes Dev 18(10):1131–1143. doi: 10.1101/gad.294104
Zhang X, Wang Q, Ling MT et al (2007) Anti-apoptotic role of TWIST and its association with Akt pathway in mediating taxol resistance in nasopharyngeal carcinoma cells. Int J Cancer 120(9):1891–1898. doi: 10.1002/ijc.22489
Lu Z, Ghosh S, Wang Z et al (2003) Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell 4(6):499–515. doi: 10.1016/S1535-6108(03)00304-0
Grotegut S, von Schweinitz D, Christofori G et al (2006) Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO J 25(15):3534–3545. doi: 10.1038/sj.emboj.7601213
Rikova K, Guo A, Zeng Q et al (2007) Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131(6):1190–1203. doi: 10.1016/j.cell.2007.11.025
Jechlinger M, Grunert S, Tamir IH et al (2003) Expression profiling of epithelial plasticity in tumor progression. Oncogene 22(46):7155–7169. doi: 10.1038/sj.onc.1206887
Jechlinger M, Sommer A, Moriggl R et al (2006) Autocrine PDGFR signaling promotes mammary cancer metastasis. J Clin Invest 116(6):1561–1570. doi: 10.1172/JCI24652
Strutz F, Zeisberg M, Ziyadeh FN et al (2002) Role of basic fibroblast growth factor-2 in epithelial-mesenchymal transformation. Kidney Int 61(5):1714–1728. doi: 10.1046/j.1523-1755.2002.00333.x
Billottet C, Elkhatib N, Thiery JP et al (2004) Targets of fibroblast growth factor 1 (FGF-1) and FGF-2 signaling involved in the invasive and tumorigenic behavior of carcinoma cells. Mol Biol Cell 15(10):4725–4734. doi: 10.1091/mbc.E04-04-0336
Suyama K, Shapiro I, Guttman M et al (2002) A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor. Cancer Cell 2(4):301–314. doi: 10.1016/S1535-6108(02)00150-2
Yamamoto N, Mammadova G, Song RX et al (2006) Tyrosine phosphorylation of p145met mediated by EGFR and Src is required for serum-independent survival of human bladder carcinoma cells. J Cell Sci 119(Pt 22):4623–4633. doi: 10.1242/jcs.03236
Morgillo F, Woo JK, Kim ES et al (2006) Heterodimerization of insulin-like growth factor receptor/epidermal growth factor receptor and induction of survivin expression counteract the antitumor action of erlotinib. Cancer Res 66(20):10100–10111. doi: 10.1158/0008-5472.CAN-06-1684
Feng Q, Baird D, Peng X et al (2006) Cool-1 functions as an essential regulatory node for EGF receptor- and Src-mediated cell growth. Nat Cell Biol 8(9):945–956. doi: 10.1038/ncb1453
Hlubek F, Brabletz T, Budczies J et al (2007) Heterogeneous expression of Wnt/beta-catenin target genes within colorectal cancer. Int J Cancer 121(9):1941–1948. doi: 10.1002/ijc.22916