KiSThelP: A program to predict thermodynamic properties and rate constants from quantum chemistry results

Journal of Computational Chemistry - Tập 35 Số 1 - Trang 82-93 - 2014
Sébastien Canneaux1,2, Frédéric Bohr1, Éric Hénon3
1LISM, EA 4695, University of Reims Champagne-Ardenne, Moulin de la Housse, 51687, Reims France
2University of Lille1 Sciences and Technologies, 59655 Villeneuve d'Ascq Cedex, France
3ICMR, UMR CNRS 7312, University of Reims Champagne-Ardenne, Moulin de la Housse, 51687, Reims France

Tóm tắt

Kinetic and Statistical Thermodynamical Package (KiSThelP) is a cross‐platform free open‐source program developed to estimate molecular and reaction properties from electronic structure data. To date, three computational chemistry software formats are supported (Gaussian, GAMESS, and NWChem). Some key features are: gas‐phase molecular thermodynamic properties (offering hindered rotor treatment), thermal equilibrium constants, transition state theory rate coefficients (transition state theory (TST), variational transition state theory (VTST)) including one‐dimensional (1D) tunnelling effects (Wigner, and Eckart) and Rice‐Ramsperger‐Kassel‐Marcus (RRKM) rate constants, for elementary reactions with well‐defined barriers. KiSThelP is intended as a working tool both for the general public and also for more expert users. It provides graphical front‐end capabilities designed to facilitate calculations and interpreting results. KiSThelP enables to change input data and simulation parameters directly through the graphical user interface and to visually probe how it affects results. Users can access results in the form of graphs and tables. The graphical tool offers customizing of 2D plots, exporting images and data files. These features make this program also well‐suited to support and enhance students learning and can serve as a very attractive courseware, taking the teaching content directly from results in molecular and kinetic modelling. © 2013 Wiley Periodicals, Inc.

Từ khóa


Tài liệu tham khảo

Zheng J., 2010, POLYRATE

10.1002/kin.1017

10.1002/kin.20447

Barker J. R., 2011, MultiWell

10.1021/cr60056a006

10.1021/jp953748q

10.1002/9780470116449.ch3

10.1021/j100647a012

Forst W., 2003, A Concise Introduction

10.1063/1.462019

Holbrook K. A., 1996, Unimolecular Reactions

Gilbert R. G., 1990, Theory of Unimolecular and Recombination Reactions

10.1021/jp973329o

10.1016/S0166-1280(00)00452-8

10.1039/B313251J

10.1039/b515118j

Alberty R. A., 1992, Physical Chemistry

10.1016/j.theochem.2008.05.025

10.1063/1.473664

10.1515/zpch-1932-1920

10.1103/PhysRev.35.1303

10.1016/0009-2614(92)85705-F

10.1007/s00214-007-0328-0

10.1021/j100471a032

10.1021/ar00072a001

10.1063/1.462472

10.1021/j100095a032

Frisch M. J., 2009, Gaussian 09 Revision A.1

10.1002/jcc.540141112

10.1016/j.cpc.2010.04.018

10.1021/jp3051033

Gilbert R. G., 1993, UNIMOL Program Suite (calculation of fall‐off curves for unimolecular and recombination reactions); School of Chemistry

S. J.Klippenstein A. F.Wagner S. H.Robertson R.Dunbar D. M.WardlawVariflex software Version 1.0;1999 Available at:http://ftp.tcg.anl.gov/pub/variflex/Summary.vrfx.

Mokrushi V., 2006, ChemRate Program Suite

10.1002/(SICI)1096-987X(19980715)19:9<1039::AID-JCC5>3.0.CO;2-R

10.1039/c1sc00225b

10.1021/jp209146b

G.Reinisch OpenSOAMS a C++ Library for the Statistics of Atomic and Molecular Systems;2012 available at:http://opensoams.googlecode.com/svn‐history/r2/doc/html/index.html.

A.Miyoshi GPOP Software Rev. 2013.07.15;2013 available at:http://www.frad.t.u‐tokyo.ac.jp/˜miyoshi/gpop/.