Kesterites—a challenging material for solar cells

Progress in Photovoltaics: Research and Applications - Tập 20 Số 5 - Trang 512-519 - 2012
Susanne Siebentritt1, Susan Schorr2
1Laboratory for Photovoltaics University of Luxembourg Luxembourg
2Helmholtz Zentrum Berlin für Materialien und Energie, Berlin, Germany

Tóm tắt

ABSTRACTKesterite materials (Cu2ZnSn(S,Se)4) are made from non‐toxic, earth‐abundant and low‐cost raw materials. We summarise here the structural and electronic material data relevant for the solar cells. The equilibrium structure of both Cu2ZnSnS4 and Cu2ZnSnSe4 is the kesterite structure. However, the stannite structure has only a slightly lower binding energy. Because the band gap of the stannite is predicted to be about 100 meV lower than the kesterite band gap, any admixture of stannite will hurt the solar cells. The band gaps of Cu2ZnSnS4 and Cu2ZnSnSe4 are 1.5 and 1.0 eV, respectively. Hardly any experiments on defects are available. Theoretically, the CuZn antisite acceptor is predicted as the most probable defect. The existence region of the kesterite phase is smaller compared with that of chalcopyrites. This makes secondary phases a serious challenge in the development of solar cells. Copyright © 2012 John Wiley & Sons, Ltd.

Từ khóa


Tài liệu tham khảo

10.1002/pip.1088

10.1002/pip.899

10.1016/j.tsf.2006.12.100

10.1002/pip.1160

10.1016/j.solmat.2010.11.028

10.1109/JPHOTOV.2011.2168811

Hall SR, 1978, Kesterite, Cu2(Zn,Fe)SnS4, and stannite, Cu2(Fe,Zn)SnS4 structurally similar but distinct minerals, The Canadian Mineralogist, 16, 131

10.1007/s002690000086

10.1007/s00269-004-0430-y

FriedlmeierTM WieserN WalterT DittrichH SchockHW. In14th European Photovoltaic Solar Energy Conference(Stephens and Asc. Barcelona 1997) Vol. 1 p. 1242.

10.1088/0268-1242/23/8/085023

10.1016/j.solmat.2011.01.002

10.1063/1.1435800

10.1063/1.122001

10.1103/PhysRevB.59.R2478

10.1016/S0927-0248(00)00268-3

10.1016/j.jpcs.2005.09.097

10.1063/1.3074499

10.1103/PhysRevB.79.115126

10.1063/1.3318468

Shay JL, 1975, Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Application

Alonso MI, 2002, Optical functions of chalcopyrite CuGaxIn1‐xSe2 alloys, Applied Physics A, 74, 659, 10.1007/s003390100931

10.1063/1.2974085

10.1063/1.2969467

10.1127/0935-1221/2007/0019-0065

10.1002/pip.976

10.1021/ja111713g

10.1016/0001-6160(53)90006-6

Wyckoff RWG, 1922, The Analytical Expression of the Results of the Theory of Space Groups

10.1016/S0927-0248(02)00127-7

10.1016/j.jpcs.2005.09.037

10.1002/pssc.200669588

10.1016/j.elecom.2008.02.008

10.1016/j.tsf.2006.12.144

10.1002/pssc.200669603

10.1016/S1001-0521(07)60096-5

10.1016/S0022-0248(99)00468-6

10.1016/j.jpcs.2007.05.022

10.1002/pssa.200723144

10.1002/pssa.200776839

10.1002/adma.200904155

10.1063/1.3457172

10.1063/1.3600060

10.1103/PhysRevB.82.205204

10.1007/3-540-31293-5_7

LarsenJ GütayL SiebentrittS. In37th IEEE Photovoltaic Specialist Conference. IEEE Seattle 2011.

10.1016/j.tsf.2008.11.024

10.1063/1.3558706

10.1143/JJAP.47.596

UnoldT KretzschmarS JustJ ZanderO SchubertB MarsenB SchockH‐W. In37th IEEE Photovoltaic Specialist Conference. IEEE Seattle 2011.

10.1103/PhysRevB.84.024120

10.1002/pssa.200669545

DalePJ HoenesK ScraggJJ SiebentrittS. In34th IEEE Photovoltaic Specialist Conference. IEEE Philadelphia 2009; 1956.

10.1143/APEX.1.041201

10.1021/ja108427b

10.1557/opl.2011.844

10.1063/1.1737071

10.1016/0022-4596(80)90457-0

10.1103/PhysRevB.59.12268

10.1143/JJAP.40.59

10.1016/S0040-6090(03)00232-3

10.1016/j.physb.2009.08.206

10.1016/j.tsf.2008.09.056

10.1063/1.3624827

10.1002/(SICI)1521-396X(199807)168:1<163::AID-PSSA163>3.0.CO;2-T

10.1063/1.1357786

Siebentritt S RegaN ZajoginA Lux‐SteinerMC. InConference on Photo‐responsive Materials (Phys. Stat. Sol. C 1(9)). Leitch AWR Botha R. (eds). Wiley Kariega Game Reserve South Africa 2004; 2304.

10.1063/1.3275796

10.1103/PhysRevB.81.113202

10.1063/1.3427433

10.1103/PhysRevB.81.245204

10.1016/j.tsf.2011.01.094

10.7567/JJAP.50.04DP07

10.1002/pip.936

10.1088/0953-8984/23/40/404203

10.1143/JJAP.27.2094

10.1016/0169-4332(95)00225-1

10.1016/S0927-0248(97)00119-0

10.1016/S0927-0248(00)00088-X

10.1143/JJAP.40.500

FriedlmeierTM DittrichH SchockHW. In11th International Conference on Ternary and Multinary Compounds. ICTMC‐11 Institute of Physics Publishing Salford UK 1998.

10.1103/PhysRevB.84.165324

10.1016/S0925-8388(02)01024-1

10.1016/j.jallcom.2003.08.084

Gödecke T, 2000, Phase equilibria of Cu‐In‐Se I: stable states and nonequilibrium states of the In2Se3‐Cu2Se subsystem, Zeitschrift für Metallkunde, 91, 622

10.1103/PhysRevB.72.035211

FontanéX Calvo‐BarrioL Izquierdo‐RocaV SaucedoE Pérez‐RodriguezA MoranteJR BergDM DalePJ SiebentrittS.In‐depth resolved Raman scattering analysis of electrodeposited Cu2ZnSnS4layers for solar cell applications: identification of secondary phases. In press2011.

10.1063/1.3600776