Bệnh Kennedy (teo cơ tủy sống và não): tổng quan lâm sàng về một bệnh hiếm

Deutsche Zeitschrift für Nervenheilkunde - Tập 266 - Trang 565-573 - 2018
Marianthi Breza1, Georgios Koutsis1
1Neurogenetics Unit, 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece

Tóm tắt

Teo cơ tủy sống và não (SBMA), còn được biết đến với tên gọi bệnh Kennedy, là một bệnh hiếm, di truyền liên kết với nhiễm sắc thể X, đặc trưng bởi sự yếu cơ tiến triển. Một sự lặp lại trinucleotide mở rộng (CAG > 37) trong gen thụ thể androgen (AR), mã hóa cho glutamine, là đột biến chịu trách nhiệm cho bệnh Kennedy. Độc tính của protein đột biến này ảnh hưởng đến cả các tế bào thần kinh vận động và cơ bắp. Trong bài tổng quan này, chúng tôi cung cấp một cái nhìn tổng thể, định hướng lâm sàng về tài liệu hiện có liên quan đến bệnh Kennedy, nhấn mạnh những khoảng trống trong kiến thức của chúng tôi cần được giải quyết trong các nghiên cứu tiếp theo. Các bệnh giả mạo của bệnh Kennedy cũng được thảo luận, cùng với những nỗ lực điều trị đang diễn ra và mới hoàn thành.

Từ khóa

#bệnh Kennedy #teo cơ tủy sống #di truyền #tế bào thần kinh vận động #đột biến gen

Tài liệu tham khảo

La Spada AR, Wilson EM, Lubahn DB et al (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352:77–79. https://doi.org/10.1038/352077a0 Pennuto M, Rinaldi C (2017) From gene to therapy in spinal and bulbar muscular atrophy: are we there yet? Mol Cell Endocrinol. https://doi.org/10.1016/j.mce.2017.07.005 Kennedy WR, Alter M, Sung JH (1968) Progressive proximal spinal and bulbar muscular atrophy of late onset. Neurology 18 Harding AE, Thomas PK, Baraitser M et al (1982) X-linked recessive bulbospinal neuronopathy: a report of ten cases. J Neurol Neurosurg Psychiatry 45:1012–1019. https://doi.org/10.1136/jnnp.45.11.1012 Koutsis G, Kladi A, Breza M et al (2015) Spinobulbar muscular atrophy (Kennedy’s disease): a rare diagnosis in the Greek population. J Neurol Sci 359:450–451. https://doi.org/10.1016/j.jns.2015.10.021 Fratta P, Nirmalananthan N, Masset L et al (2014) Correlation of clinical and molecular features in spinal bulbar muscular atrophy. Neurology 82:2077–2084. https://doi.org/10.1212/WNL.0000000000000507 Mariotti C, Castellotti B, Pareyson D et al (2000) Phenotypic manifestations associated with CAG-repeat expansion in the androgen receptor gene in male patients and heterozygous females: a clinical and molecular study of 30 families. Neuromuscul Disord 10:391–397. https://doi.org/10.1016/S0960-8966(99)00132-7 Fischbeck KH (1997) Kennedy disease. J Inherit Metab Dis 20:152–158. https://doi.org/10.1023/A:1005344403603 Guidetti D, Sabadini R, Ferlini A, Torrente I (2001) Epidemiological survey of X-linked bulbar and spinal muscular atrophy, or Kennedy disease, in the province of Reggio Emilia, Italy. Eur J Epidemiol 17:587–591. https://doi.org/10.1023/A:1014580219761 Udd B, Juvonen V, Hakamies L et al (1998) High prevalence of Kennedy’s disease in Western Finland—is the syndrome underdiagnosed? Acta Neurol Scand 98:128–133 Tanaka F, Doyu M, Ito Y et al (1996) Founder effect in spinal and bulbar muscular atrophy (SBMA). Hum Mol Genet 5:1253–1257. https://doi.org/10.1093/hmg/5.9.1253 Li M, Miwa S, Kobayashi Y et al (1998) Nuclear inclusions of the androgen receptor protein in spinal and bulbar muscular atrophy. Ann Neurol 44:249–254. https://doi.org/10.1002/ana.410440216 Grunseich C, Fischbeck KH (2015) Spinal and bulbar muscular atrophy. Neurol Clin 33:847–854. https://doi.org/10.1016/j.ncl.2015.07.002 Amato A, Prior TW, Barohn RJ et al (1993) Kennedy’s disease: a clinicopathologic correlation with mutations in the androgen receptor gene. Neurology 43:791–794 Cortes CJ, Ling SC, Guo LT et al (2014) Muscle expression of mutant androgen receptor accounts for systemic and motor neuron disease phenotypes in spinal and bulbar muscular atrophy. Neuron 82:295–307. https://doi.org/10.1016/j.neuron.2014.03.001 Adachi H, Katsuno M, Minamiyama M et al (2005) Widespread nuclear and cytoplasmic accumulation of mutant androgen receptor in SBMA patients. Brain 128:659–670. https://doi.org/10.1093/brain/awh381 Rinaldi C, Bott LC, Fischbeck KH (2014) Muscle matters in Kennedy’s disease. Neuron 82:251–253. https://doi.org/10.1016/j.neuron.2014.04.005 Rocchi A, Milioto C, Parodi S et al (2016) Glycolytic to oxidative fiber type switch and mTOR signaling activation are early-onset features of SBMA muscle modified by high fat diet. Acta Neuropathol 132:127–144. https://doi.org/10.1007/s00401-016-1550-4 Ishihara H, Kanda F, Nishio H et al (2001) Clinical features and skewed X-chromosome inactivation in female carriers of X-linked recessive spinal and bulbar muscular atrophy. J Neurol 248:856–860. https://doi.org/10.1007/s004150170069 La Spada A (1996) Spinal and bulbar muscular atrophy. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A (eds) GeneReviews®. University of Washington, Seattle. http://www.ncbi.nlm.nih.gov/books/NBK1333/. Accessed 10 mar 2018 Biancalana V, Serville F, Pommier J et al (1992) Moderate instability of the trinucleotide repeat in spinobulbar muscular atrophy. Hum Mol Genet 1:255–258 Atsuta N, Watanabe H, Ito M et al (2006) Natural history of spinal and bulbar muscular atrophy (SBMA): a study of 223 Japanese patients. Brain 129:1446–1455. https://doi.org/10.1093/brain/awl096 Grunseich C, Kats IR, Bott LC et al (2014) Early onset and novel features in a spinal and bulbar muscular atrophy patient with a 68 CAG repeat. Neuromuscul Disord 24:978–981. https://doi.org/10.1016/j.nmd.2014.06.441 Kooy RF, Reyniers E, Storm K et al (1999) CAG Repeat contraction in the androgen receptor gene in three brothers with mental retardation. Am J Med Genet 213:209–213 Kuhlenbäumer G, Kress W, Ringelstein EB, Stögbauer F (2001) Thirty-seven CAG repeats in the androgen receptor gene in two healthy individuals. J Neurol 248:23–26. https://doi.org/10.1007/s004150170265 Koutsis G, Karadima G, Kladi A, Panas M (2014) Late-onset Huntington’s disease: diagnostic and prognostic considerations. Parkinsonism Relat Disord 20:726–730. https://doi.org/10.1016/j.parkreldis.2014.03.017 Chahin N, Sorenson EJ (2009) Serum creatine kinase levels in spinobulbar muscular atrophy and amyotrophic lateral sclerosis. Muscle Nerve 40:126–129. https://doi.org/10.1002/mus.21310 Rhodes LE, Freeman BK, Auh S et al (2009) Clinical features of spinal and bulbar muscular atrophy. Brain 132:3242–3251. https://doi.org/10.1093/brain/awp258 Querin G, Bertolin C, Da Re E et al (2015) Non-neural phenotype of spinal and bulbar muscular atrophy: results from a large cohort of Italian patients. J Neurol Neurosurg Psychiatry. https://doi.org/10.1136/jnnp-2015-311305 Manzano R, Sorarú G, Grunseich C et al (2018) Beyond motor neurons: expanding the clinical spectrum in Kennedy’ s disease. J Neurol Neurosurg Psychiatry. https://doi.org/10.1136/jnnp-2017-316961 Hijikata Y, Hashizume A, Yamada S et al (2018) Biomarker-based analysis of preclinical progression in spinal and bulbar muscular atrophy. Neurology. https://doi.org/10.1212/WNL.0000000000005360. Rhodes LE, Freeman BK, Auh S et al (2009) Clinical features of spinal and bulbar muscular atrophy. Brain 25:285–287. https://doi.org/10.1093/brain/awp258 Parboosingh JS, Figlewicz D, Krizus A et al (1997) Spinobulbar muscular atrophy can mimic ALS: the importance of genetic testing in male patients with atypical ALS. Neurology 49:568–572. https://doi.org/10.1212/WNL.49.2.568 Ferrante M, Wilbourn AJ (1997) The characteristic electrodiagnostic features of Kennedy’s disease. Muscle Nerve 20:323–329 Garg N, Park SB, Vucic S et al (2016) Differentiating lower motor neuron syndromes. J Neurol Neurosurg Psychiatry. https://doi.org/10.1136/jnnp-2016-313526 Fischbeck KH (2016) Spinal and Bulbar Muscular Atrophy. J Mol Neurosci 58:317. https://doi.org/10.1007/s12031-015-0674-7 Sumner CJ, Fischbeck KH (2002) Jaw drop in Kennedy’s disease. Neurology 59:1471–1472. https://doi.org/10.1212/01.WNL.0000033325.01878.13 Praline J, Guennoc AM, Malinge MC et al (2008) Pure bulbar motor neuron involvement linked to an abnormal CAG repeat expansion in the androgen receptor gene. Amyotroph Lateral Scler 9:40–42. https://doi.org/10.1080/17482960701553915 Araki K, Nakanishi H, Nakamura T et al (2015) Myotonia-like symptoms in a patient with spinal and bulbar muscular atrophy. Neuromuscul Disord 25:913–915. https://doi.org/10.1016/j.nmd.2015.08.006 Finsterer J, Soraru G (2015) Onset manifestations of spinal and bulbar muscular atrophy (Kennedy’s disease). J Mol Neurosci. https://doi.org/10.1007/s12031-015-0663-x Finsterer J (2009) Bulbar and spinal muscular atrophy (Kennedy’s disease): a review. Eur J Neurol 16:556–561. https://doi.org/10.1111/j.1468-1331.2009.02591.x Nishiyama A, Sugeno N, Tateyama M et al (2014) Postural leg tremor in X-linked spinal and bulbar muscular atrophy. J Clin Neurosci 21:799–802. https://doi.org/10.1016/j.jocn.2013.07.026 Warnecke T, Oelenberg S, Teismann I et al (2009) Dysphagia in X-linked bulbospinal muscular atrophy (Kennedy disease). Neuromuscul Disord 19:704–708. https://doi.org/10.1016/j.nmd.2009.06.371 Hashizume A, Banno H, Katsuno M et al (2017) Quantitative assessment of swallowing dysfunction in patients with spinal and bulbar muscular atrophy. Intern Med 56:3159–3165. https://doi.org/10.2169/internalmedicine.8799-16 Sperfeld AD, Hanemann CO, Ludolph AC, Kassubek J (2005) Laryngospasm: an underdiagnosed symptom of X-linked spinobulbar muscular atrophy. Neurology 64:753–754. https://doi.org/10.1212/01.WNL.0000151978.74467.E7 Finsterer J (2010) Perspectives of Kennedy’s disease. J Neurol Sci 298:1–10. https://doi.org/10.1016/j.jns.2010.08.025 Pedroso JL, Vale TC, Barsottini OG et al (2018) Perioral and tongue fasciculations in Kennedy’s disease. Neurol Sci 39:777–779. https://doi.org/10.1007/s10072-017-3170-8 Jokela ME, Udd B (2015) Diagnostic clinical, electrodiagnostic and muscle pathology features of spinal and bulbar muscular atrophy. J Mol Neurosci. https://doi.org/10.1007/s12031-015-0684-5 Rocchi C, Greco V, Urbani A, Giorgio A (2011) Subclinical autonomic dysfunction in spinobulbar muscular atrophy. Muscle Nerve 44:737–740. https://doi.org/10.1002/mus.22159 Romigi A, Liguori C, Placidi F et al (2014) Sleep disorders in spinal and bulbar muscular atrophy (Kennedy’s disease): a controlled polysomnographic and self-reported questionnaires study. J Neurol 261:889–893. https://doi.org/10.1007/s00415-014-7293-z Araki A, Katsuno M, Suzuki K et al (2014) Brugada syndrome in spinal and bulbar muscular atrophy. Neurology 82:1813–1821. https://doi.org/10.1212/WNL.0000000000000434 Rosenbohm A, Hirsch S, Volk AE et al (2018) The metabolic and endocrine characteristics in spinal and bulbar muscular atrophy. J Neurol 265:1–11. https://doi.org/10.1007/s00415-018-8790-2 Guber RD, Takyar V, Kokkinis A et al (2017) Nonalcoholic fatty liver disease in spinal and bulbar muscular atrophy. Neurology 89:2481–2490. https://doi.org/10.1212/WNL.0000000000004748 Kassubek J, Juengling FD, Sperfeld A (2007) Widespread white matter changes in Kennedy disease: a voxel based morphometry study. J Neurol Neurosurg Psychiatry 78:1209–1213. https://doi.org/10.1136/jnnp.2006.112532 Soukup GR, Sperfeld AD, Uttner I et al (2009) Frontotemporal cognitive function in X-linked spinal and bulbar muscular atrophy (SBMA): a controlled neuropsychological study of 20 patients. J Neurol 256:1869–1875. https://doi.org/10.1007/s00415-009-5212-5 Di Rosa E, Sorarù G, Kleinbub JR et al (2014) Theory of mind, empathy and neuropsychological functioning in X-linked Spinal and Bulbar Muscular Atrophy: a controlled study of 20 patients. J Neurol 262:394–401. https://doi.org/10.1007/s00415-014-7567-5 Lai TH, Liu RS, Yang BH et al (2013) Cerebral involvement in spinal and bulbar muscular atrophy (Kennedy’s disease): a pilot study of PET. J Neurol Sci 335:139–144. https://doi.org/10.1016/j.jns.2013.09.016 Sperfeld AD, Karitzky J, Brummer D et al (2002) X-linked bulbospinal neuronopathy. Arch Neurol 59:1921. https://doi.org/10.1001/archneur.59.12.1921 Igarashi S, Tanno Y, Onodera O et al (1992) Strong correlation between the number of CAG repeats in androgen receptor genes and the clinical onset of features of spinal and bulbar muscular atrophy. Neurology 42:2300–2302 Nakatsuji H, Araki A, Hashizume A et al (2017) Correlation of insulin resistance and motor function in spinal and bulbar muscular atrophy. J Neurol 264:839–847. https://doi.org/10.1007/s00415-017-8405-3 Sobue G, Doyu M, Kachi T et al (1993) Subclinical phenotypic expressions in heterozygous females of X-linked recessive bulbospinal neuronopathy. J Neurol Sci 117:74–78. https://doi.org/10.1016/0022-510X(93)90157-T Manganelli F, Iodice V, Provitera V et al (2007) Small-fiber involvement in spinobulbar muscular atrophy (Kennedy’s disease). Muscle Nerve 36:816–820. https://doi.org/10.1002/mus.20872 Antonini G, Gragnani F, Romaniello A et al (2000) Sensory involvement in spinal-bulbar muscular atrophy (Kennedy’s disease). Muscle Nerve 23:252–258 Banno H (2012) Molecular pathophysiology and disease-modifying therapies for spinal and bulbar muscular atrophy. Arch Neurol 69:436. https://doi.org/10.1001/archneurol.2011.2308 Meriggioli MN, Rowin J, Sanders DB (1999) Distinguishing clinical and electrodiagnostic features of X-linked bulbospinal neuronopathy. Muscle Nerve 22:1693–1697 Fernández-Rhodes LE, Kokkinis AD, White MJ et al (2011) Efficacy and safety of dutasteride in patients with spinal and bulbar muscular atrophy: a randomised placebo-controlled trial. Lancet Neurol 10:140–147. https://doi.org/10.1016/S1474-4422(10)70321-5 Dahlqvist JR, Vissing J (2016) Exercise therapy in spinobulbar muscular atrophy and other neuromuscular disorders. J Mol Neurosci 58:388–393. https://doi.org/10.1007/s12031-015-0686-3 Katsuno M, Adachi H, Doyu M et al (2003) Leuprorelin rescues polyglutamine-dependent phenotypes in a transgenic mouse model of spinal and bulbar muscular atrophy. Nat Med 9:768–773. https://doi.org/10.1038/nm878 Banno H, Katsuno M, Suzuki K et al (2009) Phase 2 trial of leuprorelin in patients with spinal and bulbar muscular atrophy. Ann Neurol 65:140–150. https://doi.org/10.1002/ana.21540 Hashizume A, Katsuno M, Suzuki K et al (2017) Long-term treatment with leuprorelin for spinal and bulbar muscular atrophy: Natural history-controlled study. J Neurol Neurosurg Psychiatry 88:1026–1032. https://doi.org/10.1136/jnnp-2017-316015 Querin G, D’Ascenzo C, Peterle E et al (2013) Pilot trial of clenbuterol in spinal and bulbar muscular atrophy. Neurology 80:2095–2098. https://doi.org/10.1212/WNL.0b013e318295d766 Pourshafie N, Lee PR, Chen K et al (2016) MiR-298 counteracts mutant androgen receptor toxicity in spinal and bulbar muscular atrophy. Mol Ther. https://doi.org/10.1038/mt.2016.13 Weydt P, Sagnelli A, Rosenbohm A et al (2015) Clinical trials in spinal and bulbar muscular atrophy—past, present, and future. J Mol Neurosci. https://doi.org/10.1007/s12031-015-0682-7 Pareyson D, Fratta P, Pradat P et al (2016) Towards a european registry and biorepository for patients with spinal and bulbar muscular atrophy. J Mol Neurosci. https://doi.org/10.1007/s12031-015-0704-5