K-space dispersion error compensators for the fractional spatial derivatives based constant-Q viscoelastic wave equation modeling

Journal of Computational Physics - Tập 487 - Trang 112161 - 2023
Hongyu Zhou1,2, Yang Liu1,3,2, Jing Wang1,2
1China University of Petroleum (Beijing), State Key Laboratory of Petroleum Resources Prospecting, Beijing, 102249, China
2China University of Petroleum (Beijing), CNPC Key Laboratory of Geophysical Prospecting, Beijing, 102249, China
3China University of Petroleum (Beijing), Karamay Campus, Karamay, 834000, China

Tài liệu tham khảo

McDonal, 1958, Attenuation of shear and compressional waves in Pierre shale, Geophysics, 23, 421, 10.1190/1.1438489

Liu, 1976, Velocity dispersion due to anelasticity; implications for seismology and mantle composition, Geophys. J. Int., 47, 41, 10.1111/j.1365-246X.1976.tb01261.x

Kjartansson, 1979, Constant Q-wave propagation and attenuation, J. Geophys. Res., Solid Earth, 84, 4737, 10.1029/JB084iB09p04737

Day, 1984, Numerical simulation of attenuated wavefields using a Padé approximant method, Geophys. J. Int., 78, 105, 10.1111/j.1365-246X.1984.tb06474.x

Emmerich, 1987, Incorporation of attenuation into time-domain computations of seismic wave fields, Geophysics, 52, 1252, 10.1190/1.1442386

Carcione, 2009, Theory and modeling of constant-Q P- and S-waves using fractional time derivatives, Geophysics, 74, T1, 10.1190/1.3008548

Zhu, 2014, Theory and modelling of constant-Q P- and S-waves using fractional spatial derivatives, Geophys. J. Int., 196, 1787, 10.1093/gji/ggt483

Chen, 2016, Two efficient modeling schemes for fractional Laplacian viscoacoustic wave equation, Geophysics, 81, T233, 10.1190/geo2015-0660.1

Yang, 2018, A time-domain complex-valued wave equation for modelling visco-acoustic wave propagation, Geophys. J. Int., 215, 1064, 10.1093/gji/ggy323

Xing, 2019, Modeling frequency-independent Q viscoacoustic wave propagation in heterogeneous media, J. Geophys. Res., Solid Earth, 124, 11568, 10.1029/2019JB017985

Xing, 2021, A viscoelastic model for seismic attenuation using fractal mechanical networks, Geophys. J. Int., 224, 1658, 10.1093/gji/ggaa549

Zhang, 2021, Viscoelastic wave simulation with high temporal accuracy using frequency-dependent complex velocity, Surv. Geophys., 42, 97, 10.1007/s10712-020-09607-3

Liu, 2021, An analytic signal-based accurate time-domain viscoacoustic wave equation from the constant-Q theory, Geophysics, 86, T117, 10.1190/geo2020-0154.1

Mu, 2021, Modeling viscoacoustic wave propagation using a new spatial variable-order fractional Laplacian wave equation, Geophysics, 86, T487, 10.1190/geo2020-0610.1

Carcione, 1988, Wave propagation simulation in a linear viscoelastic medium, Geophys. J. Int., 95, 597, 10.1111/j.1365-246X.1988.tb06706.x

Blanch, 1995, Modeling of a constant Q: methodology and algorithm for an efficient and optimally inexpensive viscoelastic technique, Geophysics, 60, 176, 10.1190/1.1443744

Hestholm, 2002, Composite memory variable velocity-stress viscoelastic modelling, Geophys. J. Int., 148, 153, 10.1046/j.1365-246x.2002.01559.x

Moczo, 2005, On the rheological models used for time-domain methods of seismic wave propagation, Geophys. Res. Lett., 32, 10.1029/2004GL021598

Zhu, 2013, Approximating constant-Q seismic propagation in the time domain, Geophys. Prospect., 61, 931, 10.1111/1365-2478.12044

Bland, 1960

Podlubny, 1998

Carcione, 2010, A generalization of the Fourier pseudospectral method, Geophysics, 75, A53, 10.1190/1.3509472

Zhu, 2014, Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians, Geophysics, 79, T105, 10.1190/geo2013-0245.1

Zhu, 2015, Viscoelastic time-reversal imaging, Geophysics, 80, A45, 10.1190/geo2014-0327.1

Zhao, 2018, A stable approach for Q-compensated viscoelastic reverse time migration using excitation amplitude imaging condition, Geophysics, 83, S459, 10.1190/geo2018-0222.1

Wang, 2019, Q-compensated viscoelastic reverse time migration using mode-dependent adaptive stabilization scheme, Geophysics, 84, S301, 10.1190/geo2018-0423.1

Wang, 2018, A constant fractional-order viscoelastic wave equation and its numerical simulation scheme, Geophysics, 83, T39, 10.1190/geo2016-0609.1

Wang, 2022, Propagating seismic waves in VTI attenuating media using fractional viscoelastic wave equation, J. Geophys. Res., Solid Earth, 127, 10.1029/2021JB023280

Zhang, 2022, Modified viscoelastic wavefield simulations in the time domain using the new fractional Laplacians, J. Geophys. Eng., 19, 346, 10.1093/jge/gxac022

Fomel, 2013, Seismic wave extrapolation using lowrank symbol approximation, Geophys. Prospect., 61, 526, 10.1111/j.1365-2478.2012.01064.x

Bojarski, 1982, The k-space formulation of the scattering problem in the time domain, J. Acoust. Soc. Am., 72, 570, 10.1121/1.388038

Bojarski, 1985, The k-space formulation of the scattering problem in the time domain: an improved single propagator formulation, J. Acoust. Soc. Am., 77, 826, 10.1121/1.392051

Mast, 2001, A k-space method for large-scale models of wave propagation in tissue, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 48, 341, 10.1109/58.911717

Tabei, 2002, A k-space method for coupled first-order acoustic propagation equations, J. Acoust. Soc. Am., 111, 53, 10.1121/1.1421344

Cox, 2007, k-space propagation models for acoustically heterogeneous media: application to biomedical photoacoustics, J. Acoust. Soc. Am., 121, 3453, 10.1121/1.2717409

Fang, 2014, Lowrank seismic-wave extrapolation on a staggered grid, Geophysics, 79, T157, 10.1190/geo2013-0290.1

Song, 2013, Lowrank finite-differences and lowrank Fourier finite-differences for seismic wave extrapolation in the acoustic approximation, Geophys. J. Int., 193, 960, 10.1093/gji/ggt017

Wang, 2020, Fractional Laplacians viscoacoustic wavefield modeling with k-space-based time-stepping error compensating scheme, Geophysics, 85, T1, 10.1190/geo2019-0151.1

Firouzi, 2012, A first-order k-space model for elastic wave propagation in heterogeneous media, J. Acoust. Soc. Am., 132, 1271, 10.1121/1.4730897

Firouzi, 2017, A k-space pseudospectral method for elastic wave propagation in heterogeneous anisotropic media, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 64, 749, 10.1109/TUFFC.2017.2653063

Gong, 2018, Pseudo-analytical finite-difference elastic-wave extrapolation based on the k-space method, Geophysics, 83, T1, 10.1190/geo2017-0088.1

Du, 2020, A staggered-grid lowrank finite-difference method for elastic wave extrapolation, Ann. Geophys., 63, 329, 10.4401/ag-8197

Zhou, 2022, Novel first-order k-space formulations for wave propagation by asymmetrical factorization of space-wavenumber domain wave propagators, Geophysics, 87, T417, 10.1190/geo2021-0582.1

Koene, 2017, Eliminating time dispersion from seismic wave modeling, Geophys. J. Int., 213, 169, 10.1093/gji/ggx563

Carcione, 2007

Zhang, 2009, One-step extrapolation method for reverse time migration, Geophysics, 74, A29, 10.1190/1.3123476

Özdenvar, 1996, Causes and reduction of numerical artefacts in pseudo-spectral wavefield extrapolation, Geophys. J. Int., 126, 819, 10.1111/j.1365-246X.1996.tb04705.x

Castagna, 1993

Higdon, 1991, Absorbing boundary conditions for elastic waves, Geophysics, 56, 231, 10.1190/1.1443035

Collino, 2001, Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media, Geophysics, 66, 294, 10.1190/1.1444908

Komatitsch, 2007, An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation, Geophysics, 72, SM155, 10.1190/1.2757586

Liu, 2012, A hybrid absorbing boundary condition for elastic staggered-grid modelling, Geophys. Prospect., 60, 1114, 10.1111/j.1365-2478.2011.01051.x

Strang, 2021