Jarosite and Hematite at Meridiani Planum from Opportunity's Mössbauer Spectrometer

American Association for the Advancement of Science (AAAS) - Tập 306 Số 5702 - Trang 1740-1745 - 2004
G. Klingelhöfer1,2,3,4,5, R. V. Morris1,2,3,4,5, B. Bernhardt1,2,3,4,5, Christian Schröder1,2,3,4,5, A. Spielfiedel1,2,3,4,5, Paulo de Souza1,2,3,4,5, A. S. Yen1,2,3,4,5, R. Gellert1,2,3,4,5, E. N. Evlanov1,2,3,4,5, B. V. Zubkov1,2,3,4,5, J. Foh1,2,3,4,5, U. Bonnes1,2,3,4,5, E. Kankeleit1,2,3,4,5, Philipp Gütlich1,2,3,4,5, D. W. Ming1,2,3,4,5, Franz Renz1,2,3,4,5, Thomas J. Wdowiak1,2,3,4,5, S. W. Squyres1,2,3,4,5, R. E. Arvidson1,2,3,4,5
1Companhia Vale do Rio Doce (CVRD) Group, Vitoria, Brazil.
2Institut für Anorganische und Analytische Chemie, Johannes Gutenberg-Universität, Staudinger Weg 9, D-55128 Mainz, Germany.
3Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
4National Aeronautics and Space Administration (NASA) Johnson Space Center, Houston, TX 77058, USA.
5Space Research Institute IKI, 117997 Moscow, Russia.

Tóm tắt

Mössbauer spectra measured by the Opportunity rover revealed four mineralogical components in Meridiani Planum at Eagle crater: jarosite- and hematite-rich outcrop, hematite-rich soil, olivine-bearing basaltic soil, and a pyroxene-bearing basaltic rock (Bounce rock). Spherules, interpreted to be concretions, are hematite-rich and dispersed throughout the outcrop. Hematitic soils both within and outside Eagle crater are dominated by spherules and their fragments. Olivine-bearing basaltic soil is present throughout the region. Bounce rock is probably an impact erratic. Because jarosite is a hydroxide sulfate mineral, its presence at Meridiani Planum is mineralogical evidence for aqueous processes on Mars, probably under acid-sulfate conditions.

Từ khóa


Tài liệu tham khảo

The term “soil” is used here to denote any loose unconsolidated materials that can be distinguished from rocks bedrock or strongly cohesive sediments. No implication of the presence or absence of organic materials or living matter is intended.

10.1029/1999JE001093

10.1029/2000JE001415

Golombek et al. J. Geophys. Res.108 10.1029/2003JE002074 (2003).

Members of the MIMOS II consortium are G. Klingelhöfer B. Bernhardt P. A. de Souza Jr. J. Foh R. Gellert P. Gütlich E. Kankeleit R. V. Morris F. Renz D. S. Rodionov C. Schröder T. Wdowiak and A. Yen.

10.1126/science.1100020

G. Klingelhöfer et al. J. Geophys. Res.108 10.1029/2003JE002138 (2003).

Velocity calibration was done by using a spectrum of an absorber of metallic iron and hematite that was acquired in transmission geometry simultaneously with surface measurements. The drive error signal (difference between theoretical and actual velocity curves) was measured before and after every integration and was used to correct velocity scale.

10.1007/BF00200191

10.1029/94JE01500

Names were assigned to areographic features by the MER team for planning and operations purposes. The names are not formally recognized by the International Astronomical Union.

10.1126/science.1106171

10.1126/science.1104559

10.1126/science.1105127

10.1126/science.1105286

R. G. Burns, T. C. Solberg, in Spectroscopic Characterization of Minerals and Their Surfaces, L. M. Coyne, S. W. S. McKeever, D. F. Blake, Eds. [American Chemical Society (ACS) Symposium Series no. 415, ACS, Houston, TX, 1990], p. 262.

C. McCammon, in Mineral Physics and Crystallography: A Handbook of Physical Constants, T. J. Ahrens, Ed., vol. 2 of AGU Reference Shelf [American Geophysical Union (AGU), Washington, DC, 1995], p. 332.

J. G. Stevens A. M. Khasanov J. W. Miller H. Pollak Z. Li Mössbauer Mineral Handbook (Biltmore Press Asheville NC 1998).

10.1002/(SICI)1098-2728(1999)11:1<3::AID-LRA2>3.0.CO;2-F

10.1016/0016-7037(77)90291-5

10.1016/0022-1902(65)80150-6

10.1126/science.1104358

10.1126/science.1104909

10.1038/320055a0

10.1029/JB092iB04p0E570

R. G. Burns, Proc. Lunar Planet. Sci. Conf.18, 713 (1988).

10.1029/JB095iB09p14415

10.1016/0016-7037(93)90182-V

R. V. Morris, D. W. Ming, D. C. Golden, J. F. Bell III, in Mineral Spectroscopy: A Tribute to Roger G. Burns, M. D. Dyar, C. McCammon, M. W. Schaefer, Eds. (Special Publication No. 5, Geochemical Society, Houston, TX, 1996), p. 327.

10.1029/1998JE900008

10.1029/1999JE001059

10.1029/JB094iB03p02760

J. L. Bishop, E. Murad, in Mineral Spectroscopy: A Tribute to Roger G. Burns, M. D. Dyar, C. McCammon, M. W. Schaefer, Eds. (Special Publication No. 5, Geochemical Society, Houston, TX, 1996), p. 337.

10.1029/1999JE001059

D. M. Sherman, N. Vero, Am. Mineral.73, 1346 (1988).

10.1180/claymin.1994.029.1.01

E. Murad, J. H. Johnson, in Mössbauer Spectroscopy Applied to Inorganic Chemistry, G. J. Long, Ed. (Plenum, New York, 1987), p. 507.

10.1007/BF00200130

10.1023/A:1012655729417

Percentage molar ratio of Mg/(Mg + Fe) in the forsterite (Fo 100 )-fayalite (Fo 00 ) series.

O. N. Menzies P. A. Bland F. J. Berry Lunar and Planet. Sci.XXXII abstr. 1622 (2001).

M. D. Dyar, Meteorit. Planet. Sci.38, 1 (2003).

D. Rodionov et al., Meteorit. Planet. Sci.39 (suppl.), A91 (2004).

J. Zipfel et al., Meteorit. Planet. Sci.39 (suppl.), A118 (2004).

10.1088/0031-8949/46/1/018

10.1029/JB084iB14p08343

A martian solar day has a mean period of 24 hours 39 min 35.244 s and is referred to as a sol to distinguish this from a ∼3% shorter solar day on Earth.

Development and realization for MIMOS II was funded by the German Space Agency under contract 50QM 99022. The project has been supported by the Technical University of Darmstadt and the University of Mainz. P.A.deS. acknowledges support of Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (contract PASJ 142/1999) and CVRD from Brazil. R.V.M. and D.W.M. acknowledge support of the NASA MER Project and NASA Johnson Space Center. The support of the Russian space agency is acknowledged. We acknowledge the unwavering support of Jet Propulsion Laboratory engineering and operations staff.