Jan Steen’s ground layers analysed with Principal Component Analysis
Tóm tắt
In-depth technical and art historical research into Jan Steen’s (ca. 1626–1679) oeuvre has been a focus at the Mauritshuis since 2012, as part of the Partners in Science collaboration with Shell. The aim of this project is to shed light on the chronology of Steen’s oeuvre based on the materials he used, since only 10% of his circa 450 works are dated. Steen worked in different cities within the Netherlands (Haarlem, The Hague, Delft, Leiden and Warmond), each with a distinct artistic community. So far 39 paintings from the Mauritshuis and many other collections in and outside the Netherlands have been analysed. This paper focuses on the ground layers in Steen’s paintings. Cross sections were taken of each painting and analysed using SEM-EDX. Principal Component Analysis (PCA) on the resulting dataset was used to find correlations between variables and clustering of samples. Special versions of PCA were explored to analyse pigment identifications and to allow data fusion of this binary data with the quantitative elemental analyses, which is not trivial with normal PCA. The statistical analyses allowed us to group paintings linking them to the different cities where Steen worked and to see outliers in terms of the ground layer composition. Interestingly, the present survey also revealed that apart from commercially prepared grounds, Steen also used grounds prepared in his own studio.
Tài liệu tham khảo
Smith J. A catalogue raisonné of the works of the most eminent Dutch, Flemish and French painters, vol. 8 and supplement. London; 1829–42.
Hofstede de Groot C. Beschreibendes und kritisches Verzeichnis der Werke der hervorragendsten Holländischen Maler des XVII. Jahrhunderts, vol. 10. Esslingen am Neckar-Parijs; 1907–28.
Braun K. Alle tot nu toe bekende schilderijen van Jan Steen. Rotterdam: Lekturama; 1980.
Stols-Witlox M. A perfect ground. Preparatory layer for oil paintings 1550–1900. London: Archetype Publications Ltd; 2017. p. 141–242.
Van de Wetering E. Rembrandt, the painter at work. Amsterdam: Amsterdam University Press; 1997. p. 22.
Groen K. Grounds in Rembrandt’s workshop and in paintings by his contemporaries. In: Van de Wetering E, editor. A Corpus of Rembrandt paintings IV. Dordrecht: Stichting Foundation Rembrandt Research Project; 2005. p. 318–34, 660–77.
Verslype I, Noble P. Grounds. In: Johnson CR Jr, editor. Counting Vermeer: using weave maps to study Vermeer’s canvases. RKD studies. The Hague: RKD; 2017, § 2.5.2 http://countingvermeer.rkdmonographs.nl/chapter-2-the-use-of-x-radiographs-in-the-study-of-paintings/2.4.2-x-rays-and-vermeer2019s-painting-technique/grounds. Accessed 08 Mar 2019.
Groen K, Hendriks E. Frans Hals: a technical examination. In: Groen K, editor. Paintings in the laboratory. Scientific examination for art history and conservation. London: Archetype; 2014. p. 135–54.
Spring K, Kugler V, Bean S. Quantitative energy dispersive X-ray analysis of the blue pigment smalt in the variable pressure scanning electron microscope. In: Meeks N, Cartwright C, Meek A, Mongiatti A, editors. Historical technology, materials and conservation. SEM and microanalysis. London: Archetype; 2012. p. 114–22.
Robinet L, Spring M, Pagès-Camagna S, Vantelon D, Trcera N. Investigation of the discoloration of smalt pigments in historic paintings by micro x-ray absorption spectroscopy at the Co K-edge. Anal Chem. 2011;83:5145–52.
Haswell R, Carlyle L, Mensch CTJ, Hendriks E, Geldof M. The examination of Van Gogh’s painting grounds using quantitative SEM-EDX. In: Vellekoop M, Geldof M, Hendriks E, Jansen L, de Tagle A, editors. Van Gogh’s studio practice. New Haven: Yale University Press; 2013. p. 202–15.
Jolliffe IT. Principal Component Analysis. Berlin: Springer; 1986.
Wold S, Esbensen K, Geladi P. Principal Component Analysis. Chemom Intell Lab Syst. 1987;2:37–52.
Michailidis G, de Leeuw J. The Gifi System of descriptive multivariate analysis. Stat Sci. 1998;13:307–36.
de Leeuw J. Canonical analysis of categorical data. Ph.D. thesis, University of Leiden; 1973.
Kiers HAL. Three-way methods for the analysis of qualitative and quantitative two-way data. Leiden: DSWO Press; 1989.
Smilde AK, Song Y, Westerhuis JA, Kiers HAL, Aben N, Wessels LFA. Heterofusion: fusing genomics data of different measurement scales. 2019. http://arxiv.org/abs/1904.10279v1.
Westerhuis JA, Kourti T, MacGregor JF. Analysis of multiblock and hierarchical PCA and PLS models. J Chemom. 1998;12:301–21.
Smilde AK, Westerhuis JA, de Jong S. A framework for sequential multiblock component methods. J Chemom. 2003;17:323–37.
Indahl UG, Næs T, Liland KV. A similarity index for comparing coupled matrices. J Chemom. 2018;32:e3049.
Verslype I, Noble P. Grounds. In: Johnson CR Jr, editor. Counting Vermeer: using weave maps to study Vermeer’s canvases. RKD studies. The Hague: RKD; 2017. § 2.5.2 http://countingvermeer.rkdmonographs.nl/chapter-2-the-use-of-x-radiographs-in-the-study-of-paintings/2.4.2-x-rays-and-vermeer2019s-painting-technique/grounds. Accessed 08 Mar 2019.
Wheelock AK Jr. Pieter de Hooch/A Dutch Courtyard/1658/1660. In: Dutch paintings of the seventeenth century. NGA online editions. https://purl.org/nga/collection/artobject/63. Accessed 09 Apr 2019.
Apart from the studio grounds found in this study, a ground layer based on smalt and calcium carbonate toned with lead white, earth colours and black was found for the canvas painting Moses Striking the Rock (ca. 1670–1671, Philadelphia Museum of Art), as described in Palmer M, Gifford E.M. Jan Steen’s painting practice: the dancing couple in the context of the artist’s career. Stud Hist Art. 1997;57:127–55.