JTT-130, a microsomal triglyceride transfer protein (MTP) inhibitor lowers plasma triglycerides and LDL cholesterol concentrations without increasing hepatic triglycerides in guinea pigs
Tóm tắt
Microsomal transfer protein inhibitors (MTPi) have the potential to be used as a drug to lower plasma lipids, mainly plasma triglycerides (TG). However, studies with animal models have indicated that MTPi treatment results in the accumulation of hepatic TG. The purpose of this study was to evaluate whether JTT-130, a unique MTPi, targeted to the intestine, would effectively reduce plasma lipids without inducing a fatty liver.
Male guinea pigs (n = 10 per group) were used for this experiment. Initially all guinea pigs were fed a hypercholesterolemic diet containing 0.08 g/100 g dietary cholesterol for 3 wk. After this period, animals were randomly assigned to diets containing 0 (control), 0.0005 or 0.0015 g/100 g of MTPi for 4 wk. A diet containing 0.05 g/100 g of atorvastatin, an HMG-CoA reductase inhibitor was used as the positive control. At the end of the 7th week, guinea pigs were sacrificed to assess drug effects on plasma and hepatic lipids, composition of LDL and VLDL, hepatic cholesterol and lipoprotein metabolism.
Plasma LDL cholesterol and TG were 25 and 30% lower in guinea pigs treated with MTPi compared to controls (P < 0.05). Atorvastatin had the most pronounced hypolipidemic effects with a 35% reduction in LDL cholesterol and 40% reduction in TG. JTT-130 did not induce hepatic lipid accumulation compared to controls. Cholesteryl ester transfer protein (CETP) activity was reduced in a dose dependent manner by increasing doses of MTPi and guinea pigs treated with atorvastatin had the lowest CETP activity (P < 0.01). In addition the number of molecules of cholesteryl ester in LDL and LDL diameter were lower in guinea pigs treated with atorvastatin. In contrast, hepatic enzymes involved in maintaining cholesterol homeostasis were not affected by drug treatment.
These results suggest that JTT-130 could have potential clinical applications due to its plasma lipid lowering effects with no alterations in hepatic lipid concentrations.
Từ khóa
Tài liệu tham khảo
Hussain MM, Iqbal J, Anwar K, Rava P, Dai K: Microsomal triglyceride transfer protein: a multifunctional protein. Front Biosci. 2003, 500-506. Suppl 8
National Cholesterol Education Program Expert Panel. Second report of the National Cholesterol Education Program (NCEP) Expert panel on Detection: Evaluation and Treatment of High Blood Cholesterol in Adults; Adult Treatment Panel II. Circulation. 1994, 89: 1329-1445.
Association AH: Heart and Stroke Statistical Update. American Heart Association: 2001. 2001
Shepherd J, Cobbe SM, Ford I, Isles CG, Lorimer AR, MacFarlane PW, McKillop JH, Packard CJ: Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. N Eng J Med. 1995, 333: 1301-1307. 10.1056/NEJM199511163332001.
Sacks FM, Pfeffer MA, Moye LA, Rouleau JL, Rutherford JD, Cole TG, Brown L, Warnica JW, Arnold JMO, Wun CC, Davis BR, Braunwald E: The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. N Eng J Med. 1996, 335: 1001-1009. 10.1056/NEJM199610033351401.
Raabe M, Veniant MM, Sullivan MA, Zlot CH, Bjorkegren J, Nielson LB, Wong JS, Hamilton RL, Young SG: Analysis of the role of microsomal triglyceride transfer protein in the liver of tissue-specific knockout mice. J Clin Invest. 1999, 103 (9): 1287-1298.
Chandler CE, Wilder DE, Pettini JL, Savoy YE, Petras SF, Chang G, Vincent J, Harwood HJ: CP-346086: an MTP inhibitor that lowers plasma cholesterol and triglycerides in experimental animals and in humans. J Lipid Res. 2003, 44: 1887-1901. 10.1194/jlr.M300094-JLR200.
West KL, Fernandez ML: Guinea pigs as models to study the hypercholesterolemic effects of drugs. Cardiovasc Drug Rev. 2004, 22 (1): 55-70.
Conde K, Pineda G, Newton RS, Fernandez ML: Hypocholesterolemic effects of 3-hydroxy-3-methylglutaryl coenzyme a (HMG-CoA) reductase inhibitors in the guinea pig. Biochem Pharmacol. 1999, 58: 1209-1219. 10.1016/S0006-2952(99)00203-8.
Fernandez ML: Guinea pigs as models for cholesterol and lipoprotein metabolism. J Nutr. 2001, 131 (1): 10-20.
Lin ECK, Fernandez ML, McNamara DJ: Dietary fat type and cholesterol quantity interact to affect cholesterol metabolism in guinea pigs. J Nutr. 1992, 122: 2019-2029.
Redgrave TG, Roberts DC, West CE: Separation of plasma lipoproteins by density-gradient ultracentrifugation. Anal Biochem J. 1975, 65: 42-49. 10.1016/0003-2697(75)90488-1.
Fernandez ML, Wilson TA, Conde K, Vegara-Jimenez M, Nicolosi RJ: Hamsters and guinea pigs differ in their plasma lipoprotein cholesterol distribution when fed diets varying in animal protein, soluble fiber or cholesterol content. J Nutr. 1999, 129: 1323-1333.
Allain CC, Poon LC, Chan CS, Richard W, Fu PC: Enzymatic determination of total serum cholesterol. Clin Chem. 1974, 20: 47-475.
Carr TP, Anderssen CJ, Rudel LL: Enzymatic determination of triglycerides, free cholesterol and cholesterol in tissue lipid extracts. Clin Biochem. 1993, 26: 39-42. 10.1016/0009-9120(93)90015-X.
Markwell MK, Haas S, Bieber LL, Tolbert NE: A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem J. 1978, 87: 206-210. 10.1016/0003-2697(78)90586-9.
Homquist L, Carlson K, Carlson LA: Comparison between the use of isopropanol and tetramethylurea for the solublization and quantitation of human serum very low density apolipoproteins. Anal Biochem J. 1987, 149: 423-426.
Chapman JM, Mills GL, Ledford JH: The distribution and partial characterization of the serum apolipoproteins in the guinea pig. Biochem J. 1975, 149: 423-36.
Conde K, Vergara-Jimenesz M, Krause BR, Newton RS, Fernandez ML: Hypocholesterolemic actions of atorvastatin are associated with alterations on hepatic cholesterol metabolism and lipoprotein composition in the guinea pig. J Lipid Res. 1996, 37: 739-746.
Van Heek M, Zilversmit D: Mechanisms of hypertriglyceridemia in the coconut oil/cholesterol-fed rabbits increased secretion and decreased catabolism of VLDL. Arteriosclerosis Thromb. 1991, 11: 918-927.
Ogawa YFCJ: Assay of cholesterol ester transfer activity and purification of a cholesterol ester transfer protein. Meth Enzymol . 1985, 111: 274-285.
Fernandez ML, Conde K, Vergara-Jimenesz M, Behr T, Abdel-Fatta G: Regulation of VLDL-LDL Apo B metabolism in guinea pigs by dietary soluble fiber. Am J Clin Nutr. 1997, 65: 814-822.
Shapiro DL, Imblum RL, Rodwell VW: Thin-layer chromatographic assay for the HMG-CoA reductase and mevalonic acid. Anal Biochem J . 1969, 31: 383-390. 10.1016/0003-2697(69)90279-6.
Smith JL, de Jersey J, pillay SP, Hardie IR: Hepatic acyl-CoA: cholesterol acyltransferase. Development of a standard assay and determination in patients with cholesterol gallstones. Clin Chim Acta. 1986, 158: 271-282. 10.1016/0009-8981(86)90291-3.
Jelinek DF, Andersson S, Slaughter CA, Russel DW: Cloning and regulation of cholesterol 7a-hydroxylase, the rate limiting enzyme in bile acid biosynthesis. J Biol Chem. 1990, 265: 8190-8197.
Liao W, Hui TY, Young SG, Davis RA: Blocking microsomal triglyceride transfer protein interferes with apoB secretion without causing retention or stress in the ER. J Lipid Res. 2003, 44 (5): 978-985. 10.1194/jlr.M300020-JLR200.
Shiomi M, Ito T: MTP inhibitor decreases plasma cholesterol levels in LDL receptor-deficient WHHL rabbits by lowering the VLDL secretion. Eur J Pharmacol. 2001, 431 (1): 127-131. 10.1016/S0014-2999(01)01419-4.
Jamil H, Gordon DA, Eustice DC, Brooks CM, Dickson JK, Chen Y, Ricci B, Chu CH, Harrity TW, Ciosek CP, Biller SA, Gregg RE, Wetterau JR: An inhibitor of the microsomal triglyceride transfer protein inhibits apoB secretion from HepG2 cells. Proc Natl Acad Sci USA . 1996, 93 (21): 11991-11995. 10.1073/pnas.93.21.11991.
Le Goff W, Guerin M, Chapman MJ: Pharmacological modulation of cholesteryl ester transfer protein, a new therapeutic target in atherogenic dyslipidemia. Pharmacol Ther. 2004, 101 (1): 17-38. 10.1016/j.pharmthera.2003.10.001.