Italian consumers’ income and food waste behavior

British Food Journal - Tập 118 Số 7 - Trang 1731-1746 - 2016
Marco Setti1, Luca Falasconi1, Andrea Segré1, Ilaria Cusano1, Matteo Vittuari1
1Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy

Tóm tắt

Purpose – The purpose of this paper is to provide insights on the relationships between consumers’ income and household food waste behaviors. Design/methodology/approach – Attitude toward food waste is a paradigmatic (economic) non-standard decision making. Based on behavioral economics concepts and empirical evidences, the study analyzes the frequency of household food waste and its main drivers with a focus on individual income. Through a panel of 1,403 Italian consumers, food waste behavior and its determinants are modeled for five food typologies using proportional odds models that adopt stepwise procedures and genetic algorithms. Findings – Results suggest the existence of complex relationships between per capita income and household food waste behavior. When considering food typologies that include high value added products, this relation can be explained by an inverse U-shaped curve: mid-to-low income consumers purchase higher amounts of lower quality products and waste more food. Research limitations/implications – The research highlights the importance of understanding the main socio-economic and behavioral determinants of household food waste, and the need for further researches. Practical implications – The research motivates specific pricing, commercial and policy strategies as well as organizational technological, and educational solutions to prevent/reduce household food waste. Social implications – Lower income class consumers show a greater attitude to waste certain food typologies. In turn, this implies that food waste can further worse economic inequality and relative poverty. Originality/value – The study identifies different patterns of relationship among individual income and consumers’ food waste behavior, and describes the conditions that limit a household “Food Waste Kuznets Curve.”

Từ khóa


Tài liệu tham khảo

Agresti, A. (1999), “Modelling ordered categorical data: recent advances and future challenges”, Statistics in Medicine , Vol. 18 Nos 17-18, pp. 2191-2207, available at: http://dx.doi.org/10.1002%2f(SICI)1097-0258(19990915%2f30)18%3a17%2f18%3c2191%3a%3aAID-SIM249%3e3.0.CO%3b2-M

Agresti, A. (2010), Analysis of Ordinal Categorical Data , 2nd ed., John Wiley & Sons, New York, NY.

Akaike, H. (1973), “Information theory and an extension of the maximum likelihood principle”, in Petrov, B.N. and Csaki, F. (Eds), Second International Symposium of Information Theory , Akademiai Kiado, Budapest, pp. 267-281.

Allison, P. (2012), “When can you safely ignore multicollinearity?”, Statistical Horizons, September 10, available at: www.statisticalhorizons.com/multicollinearity (accessed April 7, 2015).

Andreoni, J. and Levinson, A. (2001), “The simple analytics of the environmental Kuznets curve”, Journal of Public Economics , Vol. 80 No. 2, pp. 269-286, available at: http://dx.doi.org/10.1016%2fS0047-2727(00)00110-9

Brook Lyndhurst (2007), “Food behaviour consumer research, findings from the quantitative survey”, final report, WRAP, Banbury, June.

Buzby, J.C. , Hodan, F.W. and Jeffrey, H. (2014), “The estimated amount, value, and calories of postharvest food losses at the retail and consumer levels in the United States”, EIB-121, Economic Research Service, USDA, Washington, DC, available at: www.ers.usda.gov/publications/eib-economic-information-bulletin/eib121.aspx (accessed January 7, 2016).

Choumert, J. , Combes Motel, P. and Dakpo, H.K. (2013), “Is the environmental Kuznets curve for deforestation a threatened theory? A meta-analysis of the literature”, Ecological Economics , Vol. 90, pp. 19-28, available at: http://dx.doi.org/10.1016/j.ecolecon.2013.02.016

DellaVigna, S. (2009), “Psychology and economics: evidence from the field”, Journal of Economic Literature , Vol. 47 No. 2, pp. 315-372, available at: www.aeaweb.org/articles.php?doi=10.1257/jel.47.2.315

Derksen, S. and Keselman, H.J. (1992), “Backward, forward and stepwise automated subset selection algorithms: frequency of obtaining authentic and noise variables”, British Journal of Mathematical and Statistical Psychology , Vol. 45 No. 2, pp. 265-282, available at: http://dx.doi.org/10.1111/j.2044-8317.1992.tb00992.x

Dinda, S. (2004), “Environmental Kuznets curve hypothesis: a survey”, Ecological Economics , Vol. 49 No. 4, pp. 431-455, available at: http://dx.doi.org/10.1016/j.ecolecon.2004.02.011

Evans, D. (2012), “Beyond the throwaway society: ordinary domestic practice and a sociological approach to household food waste”, Sociology , Vol. 46 No. 1, pp. 41-56, available at: http://dx.doi.org/10.1177/0038038511416150

Fagerland, M.W. and Hosmer, D.W. (2013), “A goodness-of-fit test for the proportional odds regression model”, Statistics in Medicine , Vol. 32 No. 13, pp. 2235-2249, available at: http://dx.doi.org/10.1002/sim.5645

Falasconi, L. , Vittuari, M. , Politano, A. and Segrè, A. (2015), “Food waste in school catering: an Italian case study”, Sustainability , Vol. 7 No. 11, pp. 14745-14760, available at: http://dx.doi.org/10.3390/su71114745

FAO (2011), “Global food losses and food waste – extent, causes and prevention”, FAO, Rome.

FAO (2013), “Food wastage footprint impacts on natural resources”, summary report, FAO, Rome.

Galeotti, M. (2007), “Economic growth and the quality of the environment: taking stock”, Environment, Development and Sustainability , Vol. 9 No. 4, pp. 427-454, available at: http://dx.doi.org/10.1007/s10668-006-9030-y

Garrone, P. , Melacini, M. and Perego, A. (2014), “Surplus food recovery and donation in Italy: the upstream process”, British Food Journal , Vol. 116 No. 9, pp. 1460-1477, available at: http://dx.doi.org/10.1108/BFJ-02-2014-0076

Goldberg, D.E. (1989), Genetic Algorithms in Search, Optimization and Machine Learning , Addison-Wesley Longman Publishing Co., Inc., Boston, MA.

Holland, J.H. (1975), Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , University of Michigan Press, Ann Arbor, MI.

Hosmer, D.W. and Lemeshow, S. (1980), “Goodness of fit tests for the multiple logistic regression models”, Communications in Statistics – Theory and Methods , Vol. 9 No. 10, pp. 1043-1069, available at: http://dx.doi.org/10.1080/03610928008827941

Levinson, A. (2002), “The ups and downs of the environmental Kuznets curve”, in List, J. and de Zeeuw, A. (Eds), Recent Advances in Environmental Economics , Edward Elgar Publishing, London, pp. 119-141.

Lin, S. , Zhang, J. and Hauser, J.R. (2015), “Learning from experience, simply”, Marketing Science , Vol. 34 No. 1, pp. 1-19, available at: http://dx.doi.org/10.1287/mksc.2014.0868

Lipinski, B. , Hanson, C. , Lomax, J. , Kitinoja, L. , Waite, R. and Searchinger, T. (2013), “Reducing food loss and waste: creating a sustainable food future, Instalment 2”, working paper, World Resources Institute, Washington, DC, June, available at: www.worldresourcesreport.org

Lipsitz, S.R. , Fitzmaurice, G.M. and Molenberghs, G. (1996), “Goodness-of-fit tests for ordinal response regression-models”, Journal of the Royal Statistical Society , Series C (Applied Statistics), Vol. 45 No. 2, pp. 175-190.

Louviere, J.J. , Hensher, D.A. and Swait, J.D. (2000), Stated Choice Methods: Analysis and Applications , Cambridge University Press, Cambridge.

McCullagh, P. (1980), “Regression models for ordinal data”, Journal of the Royal Statistical Society , Series B (Methodological), Vol. 42 No. 2, pp. 109-142.

McFadden, D.L. (1978), “Quantitative methods for analyzing travel behaviour on individuals: some recent developments”, in Hensher, D. and Stopher, P. (Eds), Behavioural Travel Modelling , Croom Helm, London, pp. 279-318.

Ma, C. and Stern, D.I. (2006), “Environmental and ecological economics: a citation analysis”, Ecological Economics , Vol. 58 No. 3, pp. 491-506, available at: http://dx.doi.org/10.1016/j.ecolecon.2005.07.023

Møller, H. , Hanssen, O.J. , Gustavsson, J. , Östergren, K. , Stenmarck, A. and Dekhtyar, P. (2014), “Report on review of (food) waste reporting methodology and practice”, FUSIONS project, Wageningen.

Östergren, K. , Gustavsson, J. , Bos-Brouwers, H. , Timmermans, T. , Hansen, O.-J. , Møller, H. , Anderson, G. , O’Connor, C. , Soethoudt, H. , Quested, T. , Easteal, S. , Politano, A. , Bellettato, C. , Canali, M. , Falasconi, L. , Gaiani, S. , Vittuari, M. , Schneider, F. , Moates, G. , Waldron, K. and Redlingshöfer, B. (2014), “FUSIONS definitional framework for food waste”, FUSIONS project, Wageningen.

Pagani, M. , Vittuari, M. and Falasconi, L. (2015), “Does packaging matter? Energy consumption of pre-packed salads”, British Food Journal , Vol. 117 No. 7, pp. 1961-1980, available at: www.mdpi.com/2071-1050/7/11/14745

Parfitt, J. , Barthel, M. and Macnaughton, S. (2010), “Food waste within food supply chains: quantification and potential for change to 2050”, Philosophical Transactions of the Royal Society, B , Vol. 365, pp. 3065-3081, available at: http://dx.doi.org/10.1098/rstb.2010.0126

Parizeau, K. , von Massow, M. and Martin, R. (2015), “Household-level dynamics of food waste production and related beliefs, attitudes, and behaviours in Guelph, Ontario”, Waste Management , Vol. 35, pp. 207-217, available at: http://dx.doi.org/10.1016/j.wasman.2014.09.019

Plassmann, F. and Khanna, N. (2006), “Preferences, technology and the environment: understanding the environmental Kuznets curve hypothesis”, American Journal of Agricultural Economics , Vol. 88 No. 3, pp. 632-643, available at: http://dx.doi.org/10.1111/j.1467-8276.2006.00884.x

Pulkstenis, E. and Robinson, T.J. (2004), “Goodness-of-fit tests for ordinal response regression models”, Statistics in Medicine , Vol. 23 No. 6, pp. 999-1014, available at: http://dx.doi.org/10.1002/sim.1659

Quested, T.E. , Marsh, E. , Stunell, D. and Parry, A.D. (2013), “Spaghetti soup: the complex world of food waste behaviours”, Resources, Conservation and Recycling , Vol. 79, pp. 43-51, available at: http://dx.doi.org/10.1016/j.resconrec.2013.04.011

Read, D. and van Leeuwen, B. (1998), “Predicting hunger: the effects of appetite and delay on choice”, Organizational Behavior and Human Decision Processes , Vol. 76 No. 2, pp. 189-205, available at: http://dx.doi.org/10.1006/obhd.1998.2803

Secondi, L. , Principato, L. and Laureti, T. (2015), “Household food waste behaviour in EU-27 countries: a multilevel analysis”, Food Policy , Vol. 56, pp. 25-40, available at: http://dx.doi.org/10.1016/j.foodpol.2015.07.007

Segrè, A. and Falasconi, L. (2012), Il libro blu dello spreco in Italia: l’acqua , Edizione Ambiente, Milano.

Segrè, A. and Vittuari, M. (2013), Il libro verde dello spreco in Italia: l’energia , Edizione Ambiente, Milano.

Segrè, A. , Falasconi, L. , Politano, A. and Vittuari, M. (2014), “Background paper on the economics of food loss and waste”, working paper, FAO, Rome.

Stern, D.I. (2004), “The rise and fall of the environmental Kuznets curve”, World Development , Vol. 32 No. 8, pp. 1419-1439, available at: http://dx.doi.org/10.1016/j.worlddev.2004.03.004

Stern, D.I. (2014), “The environmental Kuznets curve: a primer”, CCEP Working Paper No. 1404, Crawford School of Public Policy, The Australian National University, Canberra, June.

Waste Watcher (2014), “Rapporto 2014”, Waste Watcher, Bologna, available at: www.lastminutemarket.it/media_news/wp-content/uploads/2014/05/Knowledge-for-Expo-Rapporto-2014.pdf

WRAP (2011), “Consumer insight: date labels and storage guidance”, final report, WRAP, Banbury, available at: www.wrap.org.uk/content/consumer-insight-date-labels-and-storage-guidance

WRAP (2013), “Household food and drink waste in the United Kingdom 2012”, final report, WRAP, Banbury, available at: www.wrap.org.uk/content/household-food-and-drink-waste-uk-2012

WRAP (2014), Econometric modelling and household food waste”, final report, WRAP, Banbury, available at: www.wrap.org.uk/content/econometric-modelling-and-household-food-waste

Lebersorger, S. and Schneider, F. (2014), “Food loss rates at the food retail, influencing factors and reasons as a basis for waste prevention measures”, Waste Management , Vol. 34 No. 11, pp. 1911-1919, available at: http://dx.doi.org/10.1016/j.wasman.2014.06.013