Isoquercitrin kích hoạt đường dẫn tín hiệu AMP–kinase protein (AMPK) trong tế bào H4IIE chuột
Tóm tắt
Isoquercitrin, một hợp chất flavonoid phân bố rộng rãi trong các cây dược liệu và thực phẩm, có nhiều hoạt động sinh học bao gồm ức chế sự biệt hóa tế bào mỡ. Trong nghiên cứu này, chúng tôi đã điều tra tác động của isoquercitrin lên sự tích tụ lipid và các cơ chế phân tử của nó trong tế bào u gan H4IIE của chuột.
Để điều tra tác động của isoquercitrin lên sự tích tụ lipid, các tế bào H4IIE được kích thích bằng FFA và tổng mức lipid được phát hiện bằng nhuộm Oil Red O. Hơn nữa, các mức protein của AMPK và carboxylase acetyl-CoA (ACC), các biểu hiện gen của yếu tố phiên mã, các gen sinh lipid, và thụ thể adiponectin 1 (AdipoR1) được phân tích bằng Western blotting và định lượng PCR thời gian thực. Để xác nhận đường dẫn của chuyển hóa lipid gan dưới ảnh hưởng của isoquercitrin, các tế bào H4IIE đã được điều trị bằng chất ức chế AMPK và AdipoR1 siRNA.
Isoquercitrin tăng đáng kể sự phosphat hóa AMPK, giảm biểu hiện của yếu tố phiên mã SREBP-1 (sterol regulatory element binding protein 1) và gen tổng hợp acid béo FAS. Việc điều trị trước bằng chất ức chế AMPK làm giảm đáng kể phosphat hóa AMPK và tăng biểu hiện FAS do isoquercitrin kích thích. Isoquercitrin có thể còn điều chỉnh tăng biểu hiện của AdipoR1 phụ thuộc liều lượng thông qua AMPK khi có mặt chất ức chế AMPK và AdipoR1 siRNA.
Isoquercitrin dường như điều chỉnh sự kích hoạt AMPK, từ đó tăng cường biểu hiện AdipoR1, kìm hãm các biểu hiện SREBP-1 và FAS, và dẫn đến sự điều chỉnh tích tụ lipid. Những kết quả này gợi ý rằng isoquercitrin là một hợp chất dinh dưỡng mới có thể được sử dụng để ngăn ngừa rối loạn chuyển hóa lipid và bệnh gan nhiễm mỡ không do rượu.
Từ khóa
#Isoquercitrin #AMPK #chuyển hóa lipid gan #SREBP-1 #FAS #AdipoR1 #tế bào u gan H4IIE #hợp chất flavonoid #tích tụ lipid #bệnh gan nhiễm mỡ không do rượuTài liệu tham khảo
Zhang BB, Zhou G, Li C: AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab. 2009, 9: 407-416. 10.1016/j.cmet.2009.03.012.
Ahmed MH, Byrne CD: Modulation of sterol regulatory element binding proteins (SREBPs) as potential treatments for non-alcoholic fatty liver disease (NAFLD). Drug Discov Today. 2007, 12: 740-747. 10.1016/j.drudis.2007.07.009.
Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE: Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001, 108: 1167-1174. 10.1172/JCI13505.
Chen SD, Zhou HH, Lin MT, Li GH, Zhao ZX, Zhang YM: Research of influence and mechanism of combining exercise with diet control on a model of lipid metabolism rat induced by high fat diet. Lipids Health Dis. 2013, 12: 21-10.1186/1476-511X-12-21.
Adams LA, Angulo P, Lindor KD: Nonalcoholic fatty liver disease. CMAJ. 2005, 172: 899-905. 10.1503/cmaj.045232.
Mendez-Sanchez N, Arrese M, Zamora-Valdes D, Uribe M: Current concepts in the pathogenesis of nonalcoholic fatty liver disease. Liver Int. 2007, 27: 423-433. 10.1111/j.1478-3231.2007.01483.x.
Brown MS, Goldstein JL: The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1997, 89: 331-340. 10.1016/S0092-8674(00)80213-5.
Razavi SM, Zahri S, Zarrini G, Nazemiyeh H, Mohammadi S: Biological activity of quercetin-3-O-glucoside, a known plant flavonoid. Bioorg Khim. 2009, 35: 414-416.
Rogerio AP, Kanashiro A, Fontanari C, da Silva EV, Lucisano-Valim YM, Soares EG, Faccioli LH: Anti-inflammatory activity of quercetin and isoquercitrin in experimental murine allergic asthma. Inflamm Res. 2007, 56: 402-408. 10.1007/s00011-007-7005-6.
Li R, Yuan C, Dong C, Shuang S, Choi MM: In vivo antioxidative effect of isoquercitrin on cadmium-induced oxidative damage to mouse liver and kidney. Naunyn Schmiedebergs Arch Pharmacol. 2011, 383: 437-445. 10.1007/s00210-011-0613-2.
Jung SH, Kim BJ, Lee EH, Osborne NN: Isoquercitrin is the most effective antioxidant in the plant Thuja orientalis and able to counteract oxidative-induced damage to a transformed cell line (RGC-5 cells). Neurochem Int. 2010, 57: 713-721. 10.1016/j.neuint.2010.08.005.
Lee SH, Kim B, Oh MJ, Yoon J, Kim HY, Lee KJ, Lee JD, Choi KY: Persicaria hydropiper (L.) spach and its flavonoid components, isoquercitrin and isorhamnetin, activate the Wnt/beta-catenin pathway and inhibit adipocyte differentiation of 3 T3–L1 cells. Phytother Res. 2011, 25: 1629-1635. 10.1002/ptr.3469.
Liu JF, Ma Y, Wang Y, Du ZY, Shen JK, Peng HL: Reduction of lipid accumulation in HepG2 cells by luteolin is associated with activation of AMPK and mitigation of oxidative stress. Phytother Res. 2011, 25: 588-596. 10.1002/ptr.3305.
Guo H, Xia M, Zou T, Ling W, Zhong R, Zhang W: Cyanidin 3-glucoside attenuates obesity-associated insulin resistance and hepatic steatosis in high-fat diet-fed and db/db mice via the transcription factor FoxO1. J Nutr Biochem. 2012, 23: 349-360. 10.1016/j.jnutbio.2010.12.013.
Lee YK, Lee WS, Kim GS, Park OJ: Anthocyanins are novel AMPKalpha1 stimulators that suppress tumor growth by inhibiting mTOR phosphorylation. Oncol Rep. 2010, 24: 1471-1477.
Peluso MR: Flavonoids attenuate cardiovascular disease, inhibit phosphodiesterase, and modulate lipid homeostasis in adipose tissue and liver. Exp Biol Med (Maywood). 2006, 231: 1287-1299.
Goto T, Teraminami A, Lee JY, Ohyama K, Funakoshi K, Kim YI, Hirai S, Uemura T, Yu R, Takahashi N, Kawada T: Tiliroside, a glycosidic flavonoid, ameliorates obesity-induced metabolic disorders via activation of adiponectin signaling followed by enhancement of fatty acid oxidation in liver and skeletal muscle in obese-diabetic mice. J Nutr Biochem. 2012, 23: 768-776. 10.1016/j.jnutbio.2011.04.001.
Woods A, Vertommen D, Neumann D, Turk R, Bayliss J, Schlattner U, Wallimann T, Carling D, Rider MH: Identification of phosphorylation sites in AMP-activated protein kinase (AMPK) for upstream AMPK kinases and study of their roles by site-directed mutagenesis. J Biol Chem. 2003, 278: 28434-42. 10.1074/jbc.M303946200.
Stein SC, Woods A, Jones NA, Davison MD, Carling D: The regulation on AMP-actived protein kinase by phosphorylation. Biochem J. 2000, 345: 437-443. 10.1042/0264-6021:3450437.
Ha J, Daniel S, Broyles SS, Kim K-H: Critical phosphorylation sites for Acetyl-CoA Carboxylase Activity. J Biol Chem. 1994, 269: 22162-68.
Pettinelli P, Del Pozo T, Araya J, Rodrigo R, Araya AV, Smok G, Csendes A, Gutierrez L, Rojas J, Korn O, Maluenda F, Diaz JC, Rencoret G, Braghetto I, Castillo J, Poniachik J, Videla LA: Enhancement in liver SREBP-1c/PPAR-alpha ratio and steatosis in obese patients: correlations with insulin resistance and n-3 long-chain polyunsaturated fatty acid depletion. Biochim Biophys Acta. 2009, 1792: 1080-1086. 10.1016/j.bbadis.2009.08.015.
Yamauchi T, Nio Y, Maki T, Kobayashi M, Takazawa T, Iwabu M, Okada-Iwabu M, Kawamoto S, Kubota N, Kubota T, Ito Y, Kamon J, Tsuchida A, Kumagai K, Kozono H, Hada Y, Ogata H, Tokuyama K, Tsunoda M, Ide T, Murakami K, Awazawa M, Takamoto I, Froguel P, Hara K, Tobe K, Nagai R, Ueki K, Kadowaki T: Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med. 2007, 13: 332-339. 10.1038/nm1557.
Ogasawara M, Hirose A, Ono M, Aritake K, Nozaki Y, Takahashi M, Okamoto N, Sakamoto S, Iwasaki S, Asanuma T, Taniguchi T, Urade Y, Onishi S, Saibara T, Oben JA: A novel and comprehensive mouse model of human non-alcoholic steatohepatitis with the full range of dysmetabolic and histological abnormalities induced by gold thioglucose and a high-fat diet. Liver Int. 2011, 31: 542-551. 10.1111/j.1478-3231.2010.02443.x.
Awazawa M, Ueki K, Inabe K, Yamauchi T, Kaneko K, Okazaki Y, Bardeesy N, Ohnishi S, Nagai R, Kadowaki T: Adiponectin suppresses hepatic SREBP1c expression in an AdipoR1/LKB1/AMPK dependent pathway. Biochem Biophys Res Commun. 2009, 382: 51-56. 10.1016/j.bbrc.2009.02.131.
Inukai K, Nakashima Y, Watanabe M, Takata N, Sawa T, Kurihara S, Awata T, Katayama S: Regulation of adiponectin receptor gene expression in diabetic mice. Am J Physiol Endocrinol Metab. 2005, 288: E876-882.
Kharroubi I, Rasschaert J, Eizirik DL, Cnop M: Expression of adiponectin receptors in pancreatic beta cells. Biochem Biophys Res Commun. 2003, 312: 1118-1122. 10.1016/j.bbrc.2003.11.042.
Chinetti G, Zawadski C, Fruchart JC, Staels B: Expression of adiponectin receptors in human macrophages and regulation by agonists of the nuclear receptors PPARalpha, PPARgamma, and LXR. Biochem Biophys Res Commun. 2004, 314: 151-158. 10.1016/j.bbrc.2003.12.058.
Ahn TG, Yang G, Lee HM, Kim MD, Choi HY, Park KS, Lee SD, Kook YB, An HJ: Molecular mechanisms underlying the anti-obesity potential of prunetin, an O-methylated isoflavone. Biochem Pharmacol. 2013, 85: 1525-1533. 10.1016/j.bcp.2013.02.020.
Takikawa M, Inoue S, Horio F, Tsuda T: Dietary anthocyanin-rich bilberry extract ameliorates hyperglycemia and insulin sensitivity via activation of AMP-activated protein kinase in diabetic mice. J Nutr. 2010, 140: 527-533. 10.3945/jn.109.118216.
Tsuchida A, Yamauchi T, Takekawa S, Hada Y, Ito Y, Maki T, Kadowaki T: Peroxisome proliferator-activated receptor (PPAR) alpha activation increases adiponectin receptors and reduces obesity-related inflammation in adipose tissue: comparison of activation of PPARalpha, PPARgamma, and their combination. Diabetes. 2005, 54: 3358-3370. 10.2337/diabetes.54.12.3358.