Isomalt-Plasticized Methylcellulose-Based Films as Carriers of Ascorbic Acid

E.J. Matta1, María José Tavera-Quiroz2, Nora Cristina Bértola1
1Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA)-CONICET, CIC, Facultad de Ciencias Exactas-UNLP, 47 y 116, 1900, La Plata, Argentina
2Desarrollo e Innovación de Procesos Alimentarios (DESINPA), Facultad de Ingeniería, Departamento de Ingeniería Agroindustrial, Universidad de Sucre, Carrera 28 No. 5-267 Barrio Puerta Roja, Sincelejo, Sucre, Colombia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Arfat, Y. A. (2017). Plasticizers for biopolymer films. In Glass Transition and Phase Transitions in Food and Biological Materials (pp. 159–176). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118935682.ch6.

Basch, C. Y., Jagus, R. J., & Flores, S. K. (2013). Physical and antimicrobial properties of tapioca starch-HPMC edible films incorporated with nisin and/or potassium sorbate. Food and Bioprocess Technology, 6(9), 2419–2428. https://doi.org/10.1007/s11947-012-0860-3.

Beck, L. G., Aramounp, F. M., & Setser, C. (2002). Evaluation of isomalt and hydrogenated starch hydrolysate in sugarless caramel popcorn. Journal of Food Quality, 25(785), 27–37.

Bertuzzi, M. A., Castro Vidaurre, E. F., Armada, M., & Gottifredi, J. C. (2007). Water vapor permeability of edible starch based films. Journal of Food Engineering, 80(3), 972–978. https://doi.org/10.1016/j.jfoodeng.2006.07.016.

Campos, C. A., Gerschenson, L. N., & Flores, S. K. (2011). Development of edible films and coatings with antimicrobial activity. Food and Bioprocess Technology., 4(6), 849–875. https://doi.org/10.1007/s11947-010-0434-1.

Cazón, P., Velazquez, G., Ramírez, J. A., & Vázquez, M. (2017). Polysaccharide-based films and coatings for food packaging: a review. Food Hydrocolloids, 68, 136–148. https://doi.org/10.1016/j.foodhyd.2016.09.009.

Chiou, B. S., Avena-Bustillos, R. J., Bechtel, P. J., Imam, S. H., Glenn, G. M., & Orts, W. J. (2009). Effects of drying temperature on barrier and mechanical properties of cold-water fish gelatin films. Journal of Food Engineering, 95(2), 327–331. https://doi.org/10.1016/j.jfoodeng.2009.05.011.

De’Nobili, M. D., Pérez, C. D., Navarro, D. A., Stortz, C. A., & Rojas, A. M. (2013). Hydrolytic stability of l-(+)-ascorbic acid in low methoxyl pectin films with potential antioxidant activity at food interfaces. Food and Bioprocess Technology, 6(1), 186–197. https://doi.org/10.1007/s11947-011-0684-6.

Del Nobile, M. A., Chillo, S., Mentana, A., & Baiano, A. (2007). Use of the generalized maxwell model for describing the stress relaxation behavior of solid-like foods. Journal of Food Engineering, 78(3), 978–983. https://doi.org/10.1016/j.jfoodeng.2005.12.011.

Diaz Calderon, P., Quero, F., MacNaughtan, B., Rousennova, M., & Enrione, J. (2015). Efecto del sorbitol sobre la relajación estructural en películas de gelatina en estado vítreo. Revista ION, 28(2), 93–101. https://doi.org/10.18273/revion.v28n2-2015008.

Echeverría, I., López-Caballero, M. E., Gómez-Guillén, M. C., Mauri, A. N., & Montero, M. P. (2016). Structure, functionality, and active release of nanoclay–soy protein films affected by clove essential oil. Food and Bioprocess Technology, 9(11), 1937–1950. https://doi.org/10.1007/s11947-016-1777-z.

Fadini, A. L., Rocha, F. S., Alvim, I. D., Sadahira, M. S., Queiroz, M. B., Alves, R. M. V., & Silva, L. B. (2013). Mechanical properties and water vapour permeability of hydrolysed collagen-cocoa butter edible films plasticised with sucrose. Food Hydrocolloids, 30(2), 625–631. https://doi.org/10.1016/j.foodhyd.2012.08.011.

Gao, C., Pollet, E., & Averous, L. (2017). Properties of glycerol-plasticized alginate fi lms obtained by thermo- mechanical mixing. Food Hydrocolloids, 63, 414–420.

Garcia, M. A., Martino, M. N., & Zaritzky, N. E. (1998). Plasticized starch-based coatings to improve strawberry (Fragaria x Ananassa) quality and stability. Journal of Agricultural and Food Chemistry, 46(9), 3758–3767. https://doi.org/10.1021/jf980014c.

Ghanbarzadeh, B., Almasi, H., & Entezami, A. A. (2011). Improving the barrier and mechanical properties of corn starch-based edible films: effect of citric acid and carboxymethyl cellulose. Industrial Crops and Products, 33(1), 229–235. https://doi.org/10.1016/j.indcrop.2010.10.016.

Gostner, A., Blaut, M., Schäffer, V., Kozianowski, G., Theis, S., Klingeberg, M., Dombrowski, Y., Martin, D., Ehrhardt, S., Taras, D., Schwiertz, A., Kleessen, B., Lührs, H., Schauber, J., Dorbath, D., Menzel, T., & Scheppach, W. (2006). Effect of isomalt consumption on faecal microflora and colonic metabolism in healthy volunteers. British Journal of Nutrition, 95(1), 40–50. https://doi.org/10.1079/bjn20051589.

Hassan, B., Chatha, S. A. S., Hussain, A. I., Zia, K. M., & Akhtar, N. (2018). Recent advances on polysaccharides, lipids and protein based edible films and coatings: a review. International Journal of Biological Macromolecules, 109, 1095–1107. https://doi.org/10.1016/j.ijbiomac.2017.11.097.

Janjarasskul, T., Min, S. C., & Krochta, J. M. (2011). Storage stability of ascorbic acid incorporated in edible whey protein films. Journal of Agricultural and Food Chemistry, 59(23), 12428–12432. https://doi.org/10.1021/jf201629r.

Kizil, R., Irudayaraj, J., & Seetharaman, K. (2002). Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. Journal of Agricultural and Food Chemistry, 50(14), 3912–3918.

Kore, V., Tawade, S., & Kabir, J. (2017). Application of edible coatings on fruits and vegetables. Imperial Journal of Interdisciplinary Research, 3(1), 591–603. https://doi.org/10.1201/9781315373713.

Kowalczyk, D., Kazimierczak, W., Zięba, E., Mężyńska, M., Basiura-Cembala, M., Lisiecki, S., Karaś, M., & Baraniak, B. (2018). Ascorbic acid- and sodium ascorbate-loaded oxidized potato starch films: comparative evaluation of physicochemical and antioxidant properties. Carbohydrate Polymers, 181, 317–326. https://doi.org/10.1016/j.carbpol.2017.10.063.

Kurek, M., Galus, S., & Debeaufort, F. (2014). Surface, mechanical and barrier properties of bio-based composite films based on chitosan and whey protein. Food Packaging and Shelf Life, 1(1), 56–67. https://doi.org/10.1016/j.fpsl.2014.01.001.

Lagarón, J. M., López-Rubio, A., & José Fabra, M. (2016). Bio-based packaging. Journal of Applied Polymer Science., 133(2). https://doi.org/10.1002/app.42971.

Li, H., & Huneault, M. A. (2011). Comparison of sorbitol and glycerol as plasticizers for thermoplastic starch in TPS/PLA blends. Journal of Applied Polymer Science, 119(4), 2439–2448. https://doi.org/10.1002/app.32956.

López, O. V., Lecot, C. J., Zaritzky, N. E., & García, M. A. (2011). Biodegradable packages development from starch based heat sealable films. Journal of Food Engineering, 105(2), 254–263. https://doi.org/10.1016/j.jfoodeng.2011.02.029.

Łupina, K., Kowalczyk, D., Zięba, E., Kazimierczak, W., Mężyńska, M., Basiura-Cembala, M., & Wiącek, A. E. (2019). Edible films made from blends of gelatin and polysaccharide-based emulsifiers - a comparative study. Food Hydrocolloids, 96(May), 555–567. https://doi.org/10.1016/j.foodhyd.2019.05.053.

Mali, S., Grossmann, M. V. E., García, M. A., Martino, M. N., & Zaritzky, N. E. (2006). Effects of controlled storage on thermal, mechanical and barrier properties of plasticized films from different starch sources. Journal of Food Engineering, 75(4), 453–460. https://doi.org/10.1016/j.jfoodeng.2005.04.031.

Mancini, M., Moresi, M., & Rancini, R. (1999). Mechanical properties of alginate gels: empirical characterisation. Journal of Food Engineering, 39(4), 369–378. https://doi.org/10.1016/S0260-8774(99)00022-9.

Moraes Souza Araújo, J., Pires de Siqueira, A. C., Fitzgerald Blank, A., Narain, N., & Lins de Aquino Santana, L. C. (2018). A cassava starch–chitosan edible coating enriched with lippia sidoides cham. essential oil and pomegranate peel extract for preservation of italian tomatoes (Lycopersicon esculentum Mill.) stored at room temperature. Food and Bioprocess Technology, 11(9), 1750–1760. https://doi.org/10.1007/s11947-018-2139-9.

Peltzer, M. A., Salvay, A. G., Delgado, J. F., de la Osa, O., & Wagner, J. R. (2018). Use of residual yeast cell wall for new biobased materials production: effect of plasticization on film properties. Food and Bioprocess Technology, 11(11), 1995–2007. https://doi.org/10.1007/s11947-018-2156-8.

Perez, C. D., Flores, S. K., Marangoni, A. G., Gerschenson, L. N., & Rojas, A. M. (2009). Development of a high methoxyl pectin edible film for retention of L-(+)-ascorbic acid. Journal of Agricultural and Food Chemistry, 57(15), 6844–6855. https://doi.org/10.1021/jf804019x.

Pérez, C. D., De’Nobili, M. D., Rizzo, S. A., Gerschenson, L. N., Descalzo, A. M., & Rojas, A. M. (2013). High methoxyl pectin-methyl cellulose films with antioxidant activity at a functional food interface. Journal of Food Engineering, 116(1), 162–169. https://doi.org/10.1016/j.jfoodeng.2012.11.004.

Pobiega, K., Przybył, J. L., Żubernik, J., & Gniewosz, M. (2020). Prolonging the shelf life of cherry tomatoes by pullulan coating with ethanol extract of propolis during refrigerated storage. Food and Bioprocess Technology, 13(8), 1447–1461. https://doi.org/10.1007/s11947-020-02487-w.

Pushpadass, H. A., & Hanna, M. A. (2009). Age-induced changes in the microstructure and selected properties of extruded starch films plasticized with glycerol and stearic acid. Ind. Eng. Chem. Res., 48(18), 8457–8463.

Quest, A.F.G. & Leyton, L. (2012). Vitamin C. Information of micronutrients center. (2012) Linus Pauling Institute. Oregon State University. http://lpi.oregonstate.edu/es/mic/vitaminas/vitamina-C. Accessed 2012.

Ramos, Ó. L., Reinas, I., Silva, S. I., Fernandes, J. C., Cerqueira, M. A., Pereira, R. N., Vicente, A. A., Poças, M. F., Pintado, M. E., & Malcata, F. X. (2013). Effect of whey protein purity and glycerol content upon physical properties of edible films manufactured therefrom. Food Hydrocolloids, 30(1), 110–122. https://doi.org/10.1016/j.foodhyd.2012.05.001.

Riaz, A., Lei, S., Hafiz, M. S. A., Wan, P., Chen, D., Jabbar, S., et al. (2018). Preparation and characterization of chitosan-based antimicrobial active food packaging film incorporated with apple peel polyphenols. International Journal of Biological Macromolecules, 114, 547–555. https://doi.org/10.1016/j.ijbiomac.2018.03.126.

Rivero, S., García, M. A., & Pinotti, A. (2010). Correlations between structural, barrier, thermal and mechanical properties of plasticized gelatin films. Innovative Food Science and Emerging Technologies, 11(2), 369–375. https://doi.org/10.1016/j.ifset.2009.07.005.

Roos, Y. (1995). Characterization of food polymers using state diagrams. Journal of Food Engineering, 24(3), 339–360. https://doi.org/10.1016/0260-8774(95)90050-L.

Roos, Y., & Karell, M. (1991). Water and molecular weight effects on glass transitions in amorphous carbohydrates and Carbohydrate Solutions. Journal of Food Science, 56(6), 1676–1681. https://doi.org/10.1111/j.1365-2621.1991.tb08669.x.

Roussenova, M., Enrione, J., Diaz-Calderon, P., Taylor, A. J., Ubbink, J., & Alam, M. A. (2012). A nanostructural investigation of glassy gelatin oligomers: molecular organization and interactions with low molecular weight diluents. New Journal of Physics, 14(3), 1–18. https://doi.org/10.1088/1367-2630/14/3/035016.

Sartori, T., & Menegalli, F. C. (2016). Development and characterization of unripe banana starch films incorporated with solid lipid microparticles containing ascorbic acid. Food Hydrocolloids, 55, 210–219. https://doi.org/10.1016/j.foodhyd.2015.11.018.

Seacheol, M., & Krochta, J. M. (2007). Ascorbic acid-containing whey protein film coatings for control of oxidation. Journal of Agricultural and Food Chemistry., 55(8), 2964–2969. https://doi.org/10.1021/jf062698r.

Sharma, R., & Ghoshal, G. (2018). Emerging trends in food packaging. Nutrition& Food Science, 48(5), 764–779. https://doi.org/10.1108/NFS-02-2018-0051.

Sharma, P., Shehin, V. P., Kaur, N., & Vyas, P. (2019). Application of edible coatings on fresh and minimally processed vegetables: a review. International Journal of Vegetable Science, 25(3), 295–314. https://doi.org/10.1080/19315260.2018.1510863.

Shaw, N. B., Monahan, F. J., O’Riordan, E. D., & O’Sullivan, M. (2002). Physical properties of WPI films plasticized with glycerol, xylitol, or sorbitol. Journal of Food Science, 67(1), 164–167. https://doi.org/10.1111/j.1365-2621.2002.tb11377.x.

Snejdrova, E., & Dittrich, M. (2012). Pharmaceutically used plasticizers. Recent Advances in Plasticizers, 45–68. https://doi.org/10.5772/39190.

Struik, L. C. E. (1997). On the rejuvenation of physically aged polymers by mechanical deformation. Polymer, 38(16), 4053–4057.

Talja, R. A., Helén, H., Roos, Y. H., & Jouppila, K. (2007). Effect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films. Carbohydrate Polymers, 67(3), 288–295. https://doi.org/10.1016/j.carbpol.2006.05.019.

Tavera Quiroz, M. J., Lecot, J., Bertola, N., & Pinotti, A. (2013). Stability of methylcellulose-based films after being subjected to different conservation and processing temperatures. Materials Science and Engineering C, 33(5), 2918–2925. https://doi.org/10.1016/j.msec.2013.03.021.

Tavera-Quiroz, M. J., Urriza, M., Pinotti, A., & Bertola, N. (2014). Development and characterization of a baked snack from rings of green apples. Food and Bioprocess Technology, 7(8), 2218–2227. https://doi.org/10.1007/s11947-014-1310-1.

Tavera-Quiroz, M. J., Romano, N., Mobili, P., Pinotti, A., Gómez-Zavaglia, A., & Bertola, N. (2015a). Green apple baked snacks functionalized with edible coatings of methylcellulose containing Lactobacillus plantarum. Journal of Functional Foods, 16, 164–173. https://doi.org/10.1016/j.jff.2015.04.024.

Tavera-Quiroz, M. J., Urriza, M., Pinotti, A., & Bertola, N. (2015b). Baked snack from green apples formulated with the addition of isomalt. LWT-Food Science and Technology, 62(2), 1004–1010. https://doi.org/10.1016/j.lwt.2015.02.009.