Isolation and functional validation of the CmLOX08 promoter associated with signalling molecule and abiotic stress responses in oriental melon, Cucumis melo var. makuwa Makino

Springer Science and Business Media LLC - Tập 19 - Trang 1-14 - 2019
Chenghui Wang1, Ge Gao1, Songxiao Cao1, Qunjie Xie1, Hongyan Qi1
1College of Horticulture, Shenyang Agricultural University, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Liaoning Shenyang, People’s Republic of China

Tóm tắt

Lipoxygenases (LOXs) play significant roles in abiotic stress responses, and identification of LOX gene promoter function can make an important contribution to elucidating resistance mechanisms. Here, we cloned the CmLOX08 promoter of melon (Cucumis melo) and identified the main promoter regions regulating transcription in response to signalling molecules and abiotic stresses. The 2054-bp promoter region of CmLOX08 from melon leaves was cloned, and bioinformatic analysis revealed that it harbours numerous cis-regulatory elements associated with signalling molecules and abiotic stress. Five 5′-deletion fragments obtained from the CmLOX08 promoter—2054 (LP1), 1639 (LP2), 1284 (LP3), 1047 (LP4), and 418 bp (LP5)—were fused with a GUS reporter gene and used for tobacco transient assays. Deletion analysis revealed that in response to abscisic acid, salicylic acid, and hydrogen peroxide, the GUS activity of LP1 was significantly higher than that of the mock-treated control and LP2, indicating that the − 2054- to − 1639-bp region positively regulates expression induced by these signalling molecules. However, no deletion fragment GUS activity was induced by methyl jasmonate. In response to salt, drought, and wounding treatments, LP1, LP2, and LP4 promoted significantly higher GUS expression compared with the control. Among all deletion fragments, LP4 showed the highest GUS expression, indicating that − 1047 to − 1 bp is the major region regulating promoter activity and that the − 1047 to − 418-bp region positively regulates expression induced by salt, drought, and wounding, whereas the − 1284 to − 1047-bp region is a negative regulatory segment. Interestingly, although the GUS activity of LP1 and LP2 was not affected by temperature changes, that of LP3 was significantly induced by heat, indicating that the − 1284- to − 1-bp region is a core sequence responding to heat and the − 2054- to − 1284-bp region negatively regulates expression induced by heat. Similarly, the − 1047- to − 1-bp region is the main sequence responding to cold, whereas the − 2054- to − 1047-bp region negatively regulates expression induced by cold. We cloned the CmLOX08 promoter and demonstrated that it is a signalling molecule/stress-inducible promoter. Furthermore, we identified core and positive/negative regulatory regions responding to three signalling molecules and five abiotic stresses.

Tài liệu tham khảo

Feussner I, Wasternack C. The lipoxygenase pathway. Annu Rev Plant Biol. 2002;53:275–97. Andreou A, Feussner I. Lipoxygenases - structure and reaction mechanism. Phytochemistry. 2009;70(13–14):1504–10. Prost I, Dhondt S, Rothe G, Vicente J, Rodriguez MJ, Kift N, Carbonne F, Griffiths G, Esquerre-Tugaye MT, Rosahl S, et al. Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens. Plant Physiol. 2005;139(4):1902–13. Christensen SA, Nemchenko A, Borrego E, Murray I, Sobhy IS, Bosak L, DeBlasio S, Erb M, Robert CA, Vaughn KA, et al. The maize lipoxygenase, ZmLOX10, mediates green leaf volatile, jasmonate and herbivore-induced plant volatile production for defense against insect attack. Plant J. 2013;74(1):59–73. Hu T, Zeng H, Hu Z, Qv X, Chen G. Overexpression of the tomato 13-lipoxygenase gene TomloxD increases generation of endogenous jasmonic acid and resistance to Cladosporium fulvum and high temperature. Plant Mol Biol Rep. 2013;31(5):1141–9. Yan L, Zhai Q, Wei J, Li S, Wang B, Huang T, Du M, Sun J, Kang L, Li CB, et al. Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores. PLoS Genet. 2013;9(12):e1003964. Lim CW, Han S-W, Hwang IS, Kim DS, Hwang BK, Lee SC. The pepper lipoxygenase CaLOX1 plays a role in osmotic, drought and high salinity stress response. Plant Cell Physiol. 2015;56(5):930–42. Hou Y, Meng K, Han Y, Ban Q, Wang B, Suo J, Lv J, Rao J. The persimmon 9-lipoxygenase gene DkLOX3 plays positive roles in both promoting senescence and enhancing tolerance to abiotic stress. Front Plant Sci. 2015;6:1073. Wang R, Shen W, Liu L, Jiang L, Liu Y, Su N, Wan J. A novel lipoxygenase gene from developing rice seeds confers dual position specificity and responds to wounding and insect attack. Plant Mol Biol. 2008;66(4):401–14. Padilla MN, Hernandez ML, Sanz C, Martinez-Rivas JM. Molecular cloning, functional characterization and transcriptional regulation of a 9-lipoxygenase gene from olive. Phytochemistry. 2012;74:58–68. Li S-t, Zhang M, Fu C-h, Xie S, Zhang Y, L-j Y. Molecular cloning and characterization of two 9-lipoxygenase genes from Taxus chinensis. Plant Mol Biol Rep. 2012;30(6):1283–90. Yang XY, Jiang WJ, Yu HJ. The expression profiling of the lipoxygenase (LOX) family genes during fruit development, abiotic stress and hormonal treatments in cucumber (Cucumis sativus L.). Int J Mol Sci. 2012;13(2):2481–500. Gao X, Stumpe M, Feussner I. Kolomiets M. A novel plastidial lipoxygenase of maize (Zea mays) ZmLOX6 encodes for a fatty acid hydroperoxide lyase and is uniquely regulated by phytohormones and pathogen infection. Planta. 2008;227(2):491–503. Wang LW, He MW, Guo SR, Zhong M, Shu S, Sun J. NaCl stress induces CsSAMs gene expression in Cucumis sativus by mediating the binding of CsGT-3b to the GT-1 element within the CsSAMs promoter. Planta. 2017;245(5):889–908. Goldsbrough AP, Albrecht H, Stratford R. Salicylic acid-inducible binding of a tobacco nuclear protein to a 10 bp sequence which is highly conserved amongst stress-inducible genes. Plant J. 1993;3(4):563–71. Guiltinan MJ, Marcotte WR Jr. A plant leucine zipper protein that recognizes an abscisic acid response element. Science. 1990;250(4978):267. Hobo T, Asada M, Kowyama Y, Hattori T. ACGT-containing abscisic acid response element (ABRE) and coupling element 3 (CE3) are functionally equivalent. Plant J. 1999;19(6):679–89. Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M. Arabidopsis ethylene-responsive element binding factor act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell. 2000;12:393–404. Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell. 1995;7:173–82. Chauhan H, Khurana N, Nijhavan A, Khurana JP, Khurana P. The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress. Plant, Cell and Environment. 2012;35(11):1912–31. Crone D, Rueda J, Martin KL, Hamilton DA, Mascarenhas JP. The differential expression of a heat shock promoter in floral and reproductive tissues. Plant, Cell and Environment. 2001;24(8):869–74. Yu Y, Xu W, Wang J, Wang L, Yao W, Xu Y, Ding J, Wang Y. A core functional region of the RFP1 promoter from Chinese wild grapevine is activated by powdery mildew pathogen and heat stress. Planta. 2013;237(1):293–303. Singer SD, Hily JM, Cox KD. The sucrose synthase-1 promoter from Citrus sinensis directs expression of the β-glucuronidase reporter gene in phloem tissue and in response to wounding in transgenic plants. Planta. 2011;234(3):623–37. Hou J, Jiang P, Qi S, Zhang K, He Q, Xu C, Ding Z, Zhang K, Li K. Isolation and functional validation of salinity and osmotic stress inducible promoter from the maize type-II H+-pyrophosphatase gene by deletion analysis in transgenic tobacco plants. PLoS One. 2016;11(4):e0154041. Tiwari V, Patel MK, Chaturvedi AK, Mishra A, Jha B. Functional characterization of the tau class glutathione-S-transferases gene (SbGSTU) promoter of Salicornia brachiata under salinity and osmotic stress. PLoS One. 2016;11(2):e0148494. Zhang H, Hou J, Jiang P, Qi S, Xu C, He Q, Ding Z, Wang Z, Zhang K, Li K. Identification of a 467 bp promoter of maize phosphatidylinositol synthase gene (ZmPIS) which confers high-level gene expression and salinity or osmotic stress inducibility in transgenic tobacco. Front Plant Sci. 2016;7:42. Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, González VM, Hénaff E, Câmara F, Cozzuto L, Lowy E, et al. The genome of melon (Cucumis melo L.). PNAS. 2012;109(29):11872–7. Zhang C, Jin Y, Liu J, Tang Y, Cao S, Qi H. The phylogeny and expression profiles of the lipoxygenase (LOX) family genes in the melon (Cucumis melo L.) genome. Sci Hortic. 2014;170:94–102. J-y L, Zhang C, Shao Q, Y-f T, S-x C, X-o G, Y-z J, Qi H-y. Effects of abiotic stress and hormones on the expressions of five 13-CmLOXs and enzyme activity in oriental melon (Cucumis melo var. makuwa Makino). J Integr Agric. 2016;15(2):326–38. Halitschke R, Baldwin IT. Antisense LOX expression increases herbivore performance by decreasing defense responses and inhibiting growth-related transcriptional reorganization in Nicotiana attenuata. Plant J. 2003;36(6):794–807. Nemchenko A, Kunze S, Feussner I, Kolomiets M. Duplicate maize 13-lipoxygenase genes are differentially regulated by circadian rhythm, cold stress, wounding, pathogen infection, and hormonal treatments. J Exp Bot. 2006;57(14):3767–79. Bhardwaj PK, Kaur J, Sobti RC, Ahuja PS, Kumar S. Lipoxygenase in Caragana jubata responds to low temperature, abscisic acid, methyl jasmonate and salicylic acid. Gene. 2011;483(1–2):49–53. Porta H, Figueroa-Balderas RE, Rocha-Sosa M. Wounding and pathogen infection induce a chloroplast-targeted lipoxygenase in the common bean (Phaseolus vulgaris L.). Planta. 2008;227(2):363–73. Li J, Li M, Liang D, Cui M, Ma F. Expression patterns and promoter characteristics of the gene encoding Actinidia deliciosa L-galactose-1-phosphate phosphatase involved in the response to light and abiotic stresses. Mol Biol Rep. 2013;40(2):1473–85. Zhao Y, Zhou J, Xing D. Phytochrome B-mediated activation of lipoxygenase modulates an excess red light-induced defence response in Arabidopsis. J Exp Bot. 2014;65(17):4907–18. Tyagi AK. Plant genes and their expression. Curr Sci. 2001;80(2):161–9. Agarwal PK, Jha B. Transcription factors in plants and ABA dependent and independent abiotic stress signalling. Biol Plant. 2010;54(2):201–12. Yamaguchi-Shinozaki K, Shinozaki AK. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol. 2006;57:781–803. Xiong L, Schumaker KS, Zhu J-K. Cell signaling during cold, drought, and salt stress. Plant Cell. 2002;14:S165–83. Zhu JK. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol. 2002;53:247–73. Mahajan S, Tuteja N. Cold, salinity and drought stresses: an overview. Arch Biochem Biophys. 2005;444(2):139–58. Abe H. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell. 2003;15(1):63–78. Peña-Cortés H, Prat S, Atzorn R, Wasternack C, Willmitzer L. Abscisic acid-deficient plants do not accumulate proteinase inhibitor II following systemin treatment. Planta. 1996;198(3):447–51. Park HC, Kim ML, Kang YH, Jeon JM, Yoo JH, Kim MC, Park CY, Jeong JC, Moon BC, Lee JH, et al. Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol. 2004;135(4):2150–61. Pastuglia M, Roby D, Dumas C, Cock JM. Rapid induction by wounding and bacterial infection of an S gene family receptor-like kinase gene in Brassica oleracea. Plant Cell. 1997;9:49–60. Li J, Cui M, Li M, Wang X, Liang D, Ma F. Expression pattern and promoter analysis of the gene encoding GDP-d-mannose 3′,5′-epimerase under abiotic stresses and applications of hormones by kiwifruit. Sci Hortic. 2013;150:187–94. Agius F, Amaya I, Botella MA, Valpuesta V. Functional analysis of homologous and heterologous promoters in strawberry fruits using transient expression. J Exp Bot. 2005;56(409):37–46. Sung D-Y, Kaplan F, Lee K-J, Guy CL. Acquired tolerance to temperature extremes. Trends Plant Sci. 2003;8(4):179–87. Diaz-De-Leon F, Klotz K, Lagrimin LM. Nucleotide sequence of the tobacco (Nicotiana tabacum) anionic peroxidase gene. Plant Physiol. 1993;101:1117–8. Jiang C, Iu B, Singh J. Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus. Plant Mol Biol. 1996;30:679–84. Lescot M, Dhais P, Thijs G, Marchal K, Moreau Y, Peer YVD, Rouz P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002;30(1):325–7. Higo K, Ugawa Y, Iwamoto M, Korenaga T. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res. 1999;27(1):297–300. Simpson R. Purifying proteins for proteomics: a laboratory manual. United States: Cold Spring Harbor Laboratory Press; 2003. Xu W, Yu Y, Ding J, Hua Z, Wang Y. Characterization of a novel stilbene synthase promoter involved in pathogen- and stress-inducible expression from Chinese wild Vitis pseudoreticulata. Planta. 2010;231(2):475–87. Yang Y, Li R, Qi M. In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J. 2000;22(6):543–51. Jefferson RA. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Report. 1987;5(4):387–405. Jefferson RA. Plant Reporter Genes: The Gus Gene Fusion System. In: Setlow JK (ed) Gen Eng 1988;10:247–263.