Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Cách ly và đặc trưng hóa các virus cúm đài H6N1 tái tổ hợp mới từ gà ở Đông Trung Quốc
Tóm tắt
Phân nhóm H6N1 của virus cúm gia cầm (AIVs) có thể lây nhiễm sang người với các triệu chứng giống cúm; virus H6N1 có khả năng truyền bệnh từ động vật sang người, có thể đe dọa sức khỏe con người. Năm 2017, các chợ gia cầm sống (LPMs) ở tỉnh Chiết Giang đã được khảo sát để tìm kiếm AIVs. Để hiểu rõ hơn mối quan hệ di truyền giữa các chủng này từ Đông Trung Quốc và các AIV khác, tất cả các đoạn gen của các chủng này đã được giải mã và so sánh với các trình tự có tại GenBank. Trong nghiên cứu này, chúng tôi đã phân tích tính đặc hiệu liên kết thụ thể, đặc tính kháng nguyên và độc lực của hai virus H6N1 này. Năm 2017, hai AIV H6N1 được phân lập từ gà trong quá trình giám sát AIV tại LPMs ở Đông Trung Quốc. Phân tích phát sinh chủng loại cho thấy các chủng này có các đặc điểm di truyền từ các AIV H6, H10, H1, và H4 được tìm thấy ở vịt và các loài chim hoang dã ở Đông Á. Các AIV này có khả năng nhân lên trong chuột mà không cần thích nghi trước đó. Trong nghiên cứu này, chúng tôi báo cáo phát hiện các chủng virus H6N1 mới từ gà với các tái tổ hợp gen mới. Kết quả của chúng tôi gợi ý rằng những con gà này đóng một vai trò quan trọng trong việc tạo ra các tái tổ hợp mới trong AIVs và nhấn mạnh sự cần thiết phải tiếp tục giám sát các chủng AIV đang lưu hành trong gia cầm.
Từ khóa
#H6N1 #virus cúm gia cầm #đặc tính di truyền #giám sát virus #tái tổ hợp genTài liệu tham khảo
Zhu X, Yu W, McBride R, Li Y, Chen LM, Donis RO, Tong S, Paulson JC, Wilson IA. Hemagglutinin homologue from H17N10 bat influenza virus exhibits divergent receptor-binding and pH-dependent fusion activities. Proc Natl Acad Sci U S A. 2013;110:1458–63.
Tong S, Zhu X, Li Y, Shi M, Zhang J, Bourgeois M, Yang H, Chen X, Recuenco S, Gomez J, et al. New world bats harbor diverse influenza a viruses. PLoS Pathog. 2013;9:e1003657.
Kawaoka Y, Chambers TM, Sladen WL, Webster RG. Is the gene pool of influenza viruses in shorebirds and gulls different from that in wild ducks? Virology. 1988;163:247–50.
Liu M, He S, Walker D, Zhou N, Perez DR, Mo B, Li F, Huang X, Webster RG, Webby RJ. The influenza virus gene pool in a poultry market in south Central China. Virology. 2003;305:267–75.
Cardona C, Yee K, Carpenter T. Are live bird markets reservoirs of avian influenza? Poult Sci. 2009;88:856–9.
Xu KM, Li KS, Smith GJ, Li JW, Tai H, Zhang JX, Webster RG, Peiris JS, Chen H, Guan Y. Evolution and molecular epidemiology of H9N2 influenza a viruses from quail in southern China, 2000 to 2005. J Virol. 2007;81:2635–45.
Guo YJ, Krauss S, Senne DA, Mo IP, Lo KS, Xiong XP, Norwood M, Shortridge KF, Webster RG, Guan Y. Characterization of the pathogenicity of members of the newly established H9N2 influenza virus lineages in Asia. Virology. 2000;267:279–88.
Gambaryan AS, Tuzikov AB, Pazynina GV, Desheva JA, Bovin NV, Matrosovich MN, Klimov AI. 6-sulfo sialyl Lewis X is the common receptor determinant recognized by H5, H6, H7 and H9 influenza viruses of terrestrial poultry. Virol J. 2008;5:85.
Munster VJ, Baas C, Lexmond P, Waldenstrom J, Wallensten A, Fransson T, Rimmelzwaan GF, Beyer WE, Schutten M, Olsen B, et al. Spatial, temporal, and species variation in prevalence of influenza a viruses in wild migratory birds. PLoS Pathog. 2007;3:e61.
Krauss S, Obert CA, Franks J, Walker D, Jones K, Seiler P, Niles L, Pryor SP, Obenauer JC, Naeve CW, et al. Influenza in migratory birds and evidence of limited intercontinental virus exchange. PLoS Pathog. 2007;3:e167.
Krauss S, Walker D, Pryor SP, Niles L, Chenghong L, Hinshaw VS, Webster RG. Influenza a viruses of migrating wild aquatic birds in North America. Vector Borne Zoonotic Dis. 2004;4:177–89.
Kim HR, Lee YJ, Lee KK, Oem JK, Kim SH, Lee MH, Lee OS, Park CK. Genetic relatedness of H6 subtype avian influenza viruses isolated from wild birds and domestic ducks in Korea and their pathogenicity in animals. J Gen Virol. 2010;91:208–19.
Nam JH, Kim EH, Song D, Choi YK, Kim JK, Poo H. Emergence of mammalian species-infectious and -pathogenic avian influenza H6N5 virus with no evidence of adaptation. J Virol. 2011;85:13271–7.
Huang K, Zhu H, Fan X, Wang J, Cheung CL, Duan L, Hong W, Liu Y, Li L, Smith DK, et al. Establishment and lineage replacement of H6 influenza viruses in domestic ducks in southern China. J Virol. 2012;86:6075–83.
Zhao G, Lu X, Gu X, Zhao K, Song Q, Pan J, Xu Q, Duan Z, Peng D, Hu S, et al. Molecular evolution of the H6 subtype influenza a viruses from poultry in eastern China from 2002 to 2010. Virol J. 2011;8:470.
Wang G, Deng G, Shi J, Luo W, Zhang G, Zhang Q, Liu L, Jiang Y, Li C, Sriwilaijaroen N, et al. H6 influenza viruses pose a potential threat to human health. J Virol. 2014;88:3953–64.
Chin PS, Hoffmann E, Webby R, Webster RG, Guan Y, Peiris M, Shortridge KF. Molecular evolution of H6 influenza viruses from poultry in southeastern China: prevalence of H6N1 influenza viruses possessing seven a/Hong Kong/156/97 (H5N1)-like genes in poultry. J Virol. 2002;76:507–16.
Wu H, Peng X, Cheng L, Wu N. Molecular characterization of novel reassortant H6N2 subtype avian influenza viruses isolated from poultry in eastern China, in 2014. Infect Genet Evol. 2015;36:41–5.
Wu H, Lu R, Peng X, Cheng L, Jin C, Lu X, Xie T, Yao H, Wu N. Isolation and genetic characterization of novel reassortant H6N6 subtype avian influenza viruses isolated from chickens in eastern China. Arch Virol. 2016;161:1859–72.
Xin L, Bai T, Zhou JF, Chen YK, Li XD, Zhu WF, Li Y, Tang J, Chen T, Qin K, et al. Seropositivity for avian influenza H6 virus among humans, China. Emerg Infect Dis. 2015;21:1267–9.
Wei SH, Yang JR, Wu HS, Chang MC, Lin JS, Lin CY, Liu YL, Lo YC, Yang CH, Chuang JH, et al. Human infection with avian influenza a H6N1 virus: an epidemiological analysis. Lancet Respir Med. 2013;1:771–8.
Shi W, Shi Y, Wu Y, Liu D, Gao GF. Origin and molecular characterization of the human-infecting H6N1 influenza virus in Taiwan. Protein Cell. 2013;4:846–53.
Lin HT, Wang CH, Chueh LL, Su BL, Wang LC. Influenza A(H6N1) Virus in Dogs, Taiwan. Emerg Infect Dis. 2015;21:2154–7.
Cheng K, Yu Z, Gao Y, Xia X, He H, Hua Y, Chai H. Experimental infection of dogs with H6N1 avian influenza a virus. Arch Virol. 2014;159:2275–82.
Wang F, Qi J, Bi Y, Zhang W, Wang M, Zhang B, Liu J, Yan J, Shi Y, Gao GF. Adaptation of avian influenza a (H6N1) virus from avian to human receptor-binding preference. EMBO J. 2015;34:1661–73.
Huang K, Bahl J, Fan XH, Vijaykrishna D, Cheung CL, Webby RJ, Webster RG, Chen H, Smith GJ, Peiris JS, Guan Y. Establishment of an H6N2 influenza virus lineage in domestic ducks in southern China. J Virol. 2010;84:6978–86.
Wu HB, Guo CT, Lu RF, Xu LH, Wo EK, You JB, Wang YT, Wang QG, Wu NP. Genetic characterization of subtype H1 avian influenza viruses isolated from live poultry markets in Zhejiang Province, China, in 2011. Virus Genes. 2012;44:441–9.
Wu H, Lu R, Peng X, Cheng L, Liu F, Wu N. Characterization of novel Reassortant influenza a (H5N2) viruses isolated from poultry in eastern China, 2015. Front Microbiol. 2017;8:741.
Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR. Universal primer set for the full-length amplification of all influenza a viruses. Arch Virol. 2001;146:2275–89.
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.
Gupta R JEaBS: Prediction of N-glycosylation sites in human proteins; 2004. Database: NetNGlyc 1.0 [Internet]. 2004.
Tewawong N, Prachayangprecha S, Vichiwattana P, Korkong S, Klinfueng S, Vongpunsawad S, Thongmee T, Theamboonlers A, Poovorawan Y. Assessing antigenic drift of seasonal influenza a(H3N2) and a(H1N1)pdm09 viruses. PLoS One. 2015;10:e0139958.
Zou S, Gao R, Zhang Y, Li X, Chen W, Bai T, Dong L, Wang D, Shu Y. Molecular characterization of H6 subtype influenza viruses in southern China from 2009 to 2011. Emerg Microbes Infect. 2016;5:e73.
Suptawiwat O, Kongchanagul A, Chan-It W, Thitithanyanont A, Wiriyarat W, Chaichuen K, Songserm T, Suzuki Y, Puthavathana P, Auewarakul P. A simple screening assay for receptor switching of avian influenza viruses. J Clin Virol. 2008;42:186–9.
Medeiros R, Escriou N, Naffakh N, Manuguerra JC, van der Werf S. Hemagglutinin residues of recent human a(H3N2) influenza viruses that contribute to the inability to agglutinate chicken erythrocytes. Virology. 2001;289:74–85.
Liu Q, Zhou B, Ma W, Bawa B, Ma J, Wang W, Lang Y, Lyoo Y, Halpin RA, Lin X, et al. Analysis of recombinant H7N9 wild-type and mutant viruses in pigs shows that the Q226L mutation in HA is important for transmission. J Virol. 2014;88:8153–65.
Jin H, Wang D, Sun J, Cui Y, Chen G, Zhang X, Zhang J, Li X, Chai H, Gao Y, et al. Pathogenesis and phylogenetic analyses of two avian influenza H7N1 viruses isolated from wild birds. Front Microbiol. 2016;7:1066.
Chang H, Dai F, Liu Z, Yuan F, Zhao S, Xiang X, Zou F, Zeng B, Fan Y, Duan G. Seroprevalence survey of avian influenza a (H5) in wild migratory birds in Yunnan Province, southwestern China. Virol J. 2014;11:18.
Tan L, Su S, Smith DK, He S, Zheng Y, Shao Z, Ma J, Zhu H, Zhang G. A combination of HA and PA mutations enhances virulence in a mouse-adapted H6N6 influenza a virus. J Virol. 2014;88:14116–25.
Wang J, Sun Y, Xu Q, Tan Y, Pu J, Yang H, Brown EG, Liu J. Mouse-adapted H9N2 influenza a virus PB2 protein M147L and E627K mutations are critical for high virulence. PLoS One. 2012;7:e40752.
Wu H, Peng X, Lu R, Xu L, Liu F, Cheng L, Lu X, Yao H, Wu N. Virulence of an H5N8 highly pathogenic avian influenza is enhanced by the amino acid substitutions PB2 E627K and HA A149V. Infect Genet Evol. 2017;54:347–54.
Reed L, Muench H. A simple method for estimating fifty percent endpoints. Am J Hyg. 1938;27:493–7.
Wu H, Peng X, Cheng L, Lu X, Jin C, Xie T, Yao H, Wu N. Genetic and molecular characterization of H9N2 and H5 avian influenza viruses from live poultry markets in Zhejiang Province, Eastern China. Sci Rep. 2015;5:17508.
Horimoto T, Ito T, Alexander DJ, Kawaoka Y. Cleavability of hemagglutinin from an extremely virulent strain of avian influenza virus containing a unique cleavage site sequence. J Vet Med Sci. 1995;57:927–30.
Matrosovich MN, Gambaryan AS, Teneberg S, Piskarev VE, Yamnikova SS, Lvov DK, Robertson JS, Karlsson KA. Avian influenza a viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site. Virology. 1997;233:224–34.
Tzarum N, de Vries RP, Zhu X, Yu W, McBride R, Paulson JC, Wilson IA. Structure and receptor binding of the hemagglutinin from a human H6N1 influenza virus. Cell Host Microbe. 2015;17:369–76.
Aoki FY, Boivin G, Roberts N. Influenza virus susceptibility and resistance to oseltamivir. Antivir Ther. 2007;12:603–16.
Deyde VM, Xu X, Bright RA, Shaw M, Smith CB, Zhang Y, Shu Y, Gubareva LV, Cox NJ, Klimov AI. Surveillance of resistance to adamantanes among influenza a(H3N2) and a(H1N1) viruses isolated worldwide. J Infect Dis. 2007;196:249–57.
Schat KA, Bingham J, Butler JM, Chen LM, Lowther S, Crowley TM, Moore RJ, Donis RO, Lowenthal JW. Role of position 627 of PB2 and the multibasic cleavage site of the hemagglutinin in the virulence of H5N1 avian influenza virus in chickens and ducks. PLoS One. 2012;7:e30960.
Bussey KA, Bousse TL, Desmet EA, Kim B, Takimoto T. PB2 residue 271 plays a key role in enhanced polymerase activity of influenza a viruses in mammalian host cells. J Virol. 2010;84:4395–406.
Zhang Y, Zhu J, Li Y, Bradley KC, Cao J, Chen H, Jin M, Zhou H. Glycosylation on hemagglutinin affects the virulence and pathogenicity of pandemic H1N1/2009 influenza a virus in mice. PLoS One. 2013;8:e61397.
Suptawiwat O, Boonarkart C, Chakritbudsabong W, Uiprasertkul M, Puthavathana P, Wiriyarat W, Auewarakul P. The N-linked glycosylation site at position 158 on the head of hemagglutinin and the virulence of H5N1 avian influenza virus in mice. Arch Virol. 2015;160:409–15.
Xiong X, McCauley JW, Steinhauer DA. Receptor binding properties of the influenza virus hemagglutinin as a determinant of host range. Curr Top Microbiol Immunol. 2014;385:63–91.
Klimov A, Balish A, Veguilla V, Sun H, Schiffer J, Lu X, Katz JM, Hancock K. Influenza virus titration, antigenic characterization, and serological methods for antibody detection. Methods Mol Biol. 2012;865:25–51.
Hotta K, Takakuwa H, Le QM, Phuong SL, Murase T, Ono E, Ito T, Otsuki K, Yamashiro T. Isolation and characterization of H6N1 and H9N2 avian influenza viruses from ducks in Hanoi, Vietnam. Virus Res. 2012;163:448–53.
Myers KP, Setterquist SF, Capuano AW, Gray GC. Infection due to 3 avian influenza subtypes in United States veterinarians. Clin Infect Dis. 2007;45:4–9.
Zhang G, Kong W, Qi W, Long LP, Cao Z, Huang L, Qi H, Cao N, Wang W, Zhao F, et al. Identification of an H6N6 swine influenza virus in southern China. Infect Genet Evol. 2011;11:1174–7.
Yuan R, Zou L, Kang Y, Wu J, Zeng X, Lu J, Liang L, Song Y, Zhang X, Ni H, et al. Reassortment of avian influenza a/H6N6 viruses from live poultry Markets in Guangdong, China. Front Microbiol. 2016;7:65.
Xie Z, Xie L, Zhou C, Liu J, Pang Y, Deng X, Fan Q. Complete genome sequence analysis of an H6N1 avian influenza virus isolated from Guangxi pockmark ducks. J Virol. 2012;86:13868–9.
Yuan J, Zhang L, Kan X, Jiang L, Yang J, Guo Z, Ren Q. Origin and molecular characteristics of a novel 2013 avian influenza a(H6N1) virus causing human infection in Taiwan. Clin Infect Dis. 2013;57:1367–8.
Belser JA, Gustin KM, Pearce MB, Maines TR, Zeng H, Pappas C, Sun X, Carney PJ, Villanueva JM, Stevens J, et al. Pathogenesis and transmission of avian influenza a (H7N9) virus in ferrets and mice. Nature. 2013;501:556–9.
Brown EG. Increased virulence of a mouse-adapted variant of influenza a/FM/1/47 virus is controlled by mutations in genome segments 4, 5, 7, and 8. J Virol. 1990;64:4523–33.
Yao Y, Wang H, Chen Q, Zhang H, Zhang T, Chen J, Xu B, Sun B, Chen Z. Characterization of low-pathogenic H6N6 avian influenza viruses in Central China. Arch Virol. 2013;158:367–77.
Yu Z, Cheng K, Xin Y, Sun W, Li X, Huang J, Zhang K, Yang S, Wang T, Zheng X, et al. Multiple amino acid substitutions involved in the adaptation of H6N1 avian influenza virus in mice. Vet Microbiol. 2014;174:316–21.
Cheng K, Yu Z, Chai H, Sun W, Xin Y, Zhang Q, Huang J, Zhang K, Li X, Yang S, et al. PB2-E627K and PA-T97I substitutions enhance polymerase activity and confer a virulent phenotype to an H6N1 avian influenza virus in mice. Virology. 2014;468-470:207–13.
Ni F, Kondrashkina E, Wang Q. Structural and functional studies of influenza virus a/H6 hemagglutinin. PLoS One. 2015;10:e0134576.
Cheung CL, Vijaykrishna D, Smith GJ, Fan XH, Zhang JX, Bahl J, Duan L, Huang K, Tai H, Wang J, et al. Establishment of influenza a virus (H6N1) in minor poultry species in southern China. J Virol. 2007;81:10402–12.