Is microbial diversity an asset for inhibiting Listeria monocytogenes in raw milk cheeses?
Tóm tắt
This study aimed at determining if microbial diversity can be an asset to guarantee the microbial safety of raw milk cheeses. Our results show that microbial consortia from the surface of raw milk cheeses can self-protect against Listeria monocytogenes. Indeed, 10 complex microbial consortia among 34 tested from the surfaces of raw milk Saint-Nectaire cheeses were particularly effective for reducing the growth of L. monocytogenes on cheese surfaces in comparison of a commercial ripening culture, despite the high pH values on the surfaces. One of these consortia (TR15) was selected and propagated on cheese surfaces to create a collection of strains belonging to lactic acid bacteria, Gram-positive and catalase-positive bacteria, Gram-negative bacteria and yeasts. On the surfaces of uncooked cheeses, defined consortia consisting of combinations of several isolates from this collection displayed weaker antagonist activity against L. monocytogenes than the complex consortium TR15. The results from plate counting and analysis by single strand conformation polymorphism (SSCP) converged to show that microbial dynamics in cheeses TR15 differed from that of the defined consortia. TR15 cheeses had the highest levels of cultivable lactobacilli and leuconostocs. Their SSCP profiles were the richest in peaks and were characterised by the presence of Marinilactibacillus psychrotolerans, Carnobacterium mobile, Arthrobacter nicotianae or A. arilaitensis, Arthrobacter ardleyensis or A. bergerei and Brachybactrerium sp. Further investigation will be necessary to gain a better understanding of the microbial interactions involved in inhibiting L. monocytogenes.
Tài liệu tham khảo
Bertelsen H., Andersen H., Tvede M., Fermentation of D-tagatose by human intestinal bacteria and dairy lactic acid bacteria, Microb. Ecol. Health Dis. 13 (2001) 87–95.
Beuvier E., Buchin S., Raw Milk Cheeses, in: Fox P.F., McSweeney P.L.H., Cogan T.M., Guinee T.P. (Eds.), Cheese: Chemistry, Physics and Microbiology, Vol. 1: General aspects, 3rd edn., Elsevier Ltd, London, UK, 2004, pp. 319–345.
Bonaiti C., Leclercq-Perlat M.-N., Latrille E., Corrieu G., Deacidification by Debaryomyces hansenii of smear soft cheeses ripened under controlled conditions: relative humidity and temperature influences, J. Dairy Sci. 87 (2004) 3976–3988.
Brennan N.M., Ward A.C., Beresford T.P., Fox P.F., Goodfellow M., Cogan T.M., Biodiversity of the bacterial flora on the surface of a smear cheese, Appl. Environ. Microbiol. 68 (2002) 820–830.
Brouillaud-Delattre A., Maire M., Collette C., Mattei C., Lahellec C., Predictive microbiology of dairy products: influence of biological factors affecting growth of Listeria monocytogenes, J. AOAC Int. 80 (1997) 913–919.
Callon C., Berdagué J.L., Dufour E., Montel M.C., The effect of raw milk microbial flora on the sensory characteristics of Salers-type cheeses, J. Dairy Sci. 88 (2005) 3840–3850.
Callon C., Duthoit F., Delbès C., Ferrand M., Le Frileux Y., De Crémoux R., Montel M.C., Stability of microbial communities in goat milk during a lactation year: molecular approaches, Syst. Appl. Microbiol. 30 (2007) 547–560.
Carnio M.C., Eppert I., Scherer S., Analysis of the bacterial surface ripening flora of German and French smeared cheeses with respect to their antilisterial potential, Int. J. Food Microbiol. 47 (1999) 89–97.
D’Amico D.J., Druart M.J., Donnelly C.W., Sixty-day aging requirement does not ensure safety of surface-mold-ripened soft cheeses manufactured from raw or pasteurized milk when Listeria monocytogenes is introduced as a postprocessing contaminant, J. Food Prot. 71 (2008) 1563–1571.
De Buyser M.L., Dufour B., Maire M., Lafarge V., Implication of milk and milk products in food-borne diseases in France and in different industrialised countries, Int. J. Food Microbiol. 67 (2001) 1–17.
Delbès C., Ali Mandjee L., Montel M.C., Monitoring bacterial communities in raw milk and cheese by culture-dependent and -independent 16S rRNA gene-based analyses, Appl. Environ. Microbiol. 73 (2007) 1882–1891.
El-Baradei G., Delacroix-Buchet A., Ogier J.-C., Biodiversity of bacterial ecosystems in traditional Egyptian domiati cheese, Appl. Environ. Microbiol. 73 (2007) 1248–1255.
Eppert I., Valdes-Stauber N., Gotz H., Busse M., Scherer S., Growth reduction of Listeria spp. caused by undefined industrial red smear cheese cultures and bacteriocin-producing Brevibacterium linens as evaluated in situ on soft cheese, Appl. Environ. Microbiol. 63 (1997) 4812–4817.
Feurer C., Irlinger F., Spinnler H.E., Glaser P., Vallaeys T., Assessment of the rind microbial diversity in a farmhouse-produced vs a pasteurized industrially produced soft red-smear cheese using both cultivation and rDNA-based methods, J. Appl. Microbiol. 97 (2004) 546–556.
Gay M., Amgar A., Factors moderating Listeria monocytogenes growth in raw milk and soft cheese made from raw milk, Lait 85 (2005) 153–170.
Goerges S., Aigner U., Silakowski B., Scherer S., Inhibition of Listeria monocytogenes by food-borne yeasts, Appl. Environ. Microbiol. 72 (2006) 313–318.
Guillier L., Stahl V., Hezard B., Notz E., Briandet R., Modelling the competitive growth between Listeria monocytogenes and biofilm microflora of smear cheese wooden shelves, Int. J. Food Microbiol. 128 (2008) 51–57.
Hemme D., Foucaud-Scheunemann C., Leuconostoc, characteristics, use in dairy technology and prospects in functional foods, Int. Dairy J. 14 (2004) 467–494.
Larsen A.G., Knochel S., Antimicrobial activity of food-related Penicillium sp. against pathogenic bacteria in laboratory media and a cheese model system, J. Appl. Microbiol. 83 (1997) 111–119.
Leclercq-Perlat M.N., Oumer A., Bergère J.L., Spinnler H.E., Corrieu G., Growth of Debaryomyces hansenii on a bacterial surface-ripened soft cheese, J. Dairy Res. 66 (1999) 271–281.
Liu S.Q., Practical implications of lactate and pyruvate metabolism by lactic acid bacteria in food and beverage fermentations, Int. J. Food Microbiol. 83 (2003) 115–131.
Loessner M., Guenther S., Steffan S., Scherer S., A pediocin-producing Lactobacillus plantarum strain inhibits Listeria monocytogenes in a multispecies cheese surface microbial ripening consortium, Appl. Environ. Microbiol. 69 (2003) 1854–1857.
Mansour S., Beckerich J.M., Bonnarme P., Lactate and amino acid catabolism in the cheese-ripening yeast Yarrowia lipolytica, Appl. Environ. Microbiol. 74 (2008) 6505–6512.
Maoz A., Mayr R., Scherer S., Temporal stability and biodiversity of two complex antilisterial cheese-ripening microbial consortia, Appl. Environ. Microbiol. 69 (2003) 4012–4018.
Millet L., Saubusse M., Didienne R., Tessier L., Montel M.C., Control of Listeria monocytogenes in raw-milk cheeses, Int. J. Food Microbiol. 108 (2006) 105–114.
Ostling C.E., Lindgren S.E., Inhibition of enterobacteria and listeria growth by lactic, acetic and formic acids, J. Appl. Bacteriol. 75 (1993) 18–24.
Sarantinopoulos P., Kalantzopoulos G., Tsakalidou E., Citrate metabolism by Enterococcus faecalis FAIR-E 229, Appl. Environ. Microbiol. 67 (2001) 5482–5487.
Saubusse M., Millet L., Delbès C., Callon C., Montel M.C., Application of single strand conformation polymorphism — PCR method for distinguishing cheese bacterial communities that inhibit Listeria monocytogenes, Int. J. Food Microbiol. 116 (2007) 126–135.
Teixeira de Carvalho A.A., Aparecida de Paula R., Mantovani H.C., Alencar de Moraes C., Inhibition of Listeria monocytogenes by a lactic acid bacterium isolated from Italian salami, Food Microbiol. 23 (2006) 213–219.
Valdes-Stauber N., Gotz H., Busse M., Antagonistic effect of coryneform bacteria from red smear cheese against listeria species, Int. J. Food Microbiol. 13 (1991) 119–130.