Ionic field effect and memristive phenomena in single-point ferroelectric domain switching

Nature Communications - Tập 5 Số 1
Anton V. Ievlev1, Anna N. Morozovska2, Eugene A. Eliseev3, V. Ya. Shur4, Sergei V. Kalinin1
1The Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, Tennessee 37831, USA.
2Institute of Physics, National Academy of Sciences of Ukraine, 46, pr. Nauki, 03028 Kiev Ukraine,
3Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3, Krjijanovskogo, 03142 Kiev, Ukraine
4Ferroelectric Laboratory, Institute of Natural Sciences, Ural Federal University, 51 Lenin avenue, 620000 Ekaterinburg, Russia.

Tóm tắt

Từ khóa


Tài liệu tham khảo

Gleick, J. The Information: A History, A Theory, A Flood 544Vintage (2012).

Sze, S. & Ng, K. Physics of Semiconductor Devices 832Wiley (2006).

Waser, R. Nanoelectronics and Information Technology. Wiley (2012).

Wolf, S. A. et al. Spintronics: A spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

Zutic, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

Tokura, Y. & Nagaosa, N. Orbital physics in transition-metal oxides. Science 288, 462–468 (2000).

Bibes, M., Villegas, J. E. & Barthelemy, A. Ultrathin oxide films and interfaces for electronics and spintronics. Adv. Phys. 60, 5–84 (2011).

Tsymbal, E. Y. & Kohlstedt, H. Applied physics - tunneling across a ferroelectric. Science 313, 181–183 (2006).

Mathews, S., Ramesh, R., Venkatesan, T. & Benedetto, J. Ferroelectric field effect transistor based on epitaxial perovskite heterostructures. Science 276, 238–240 (1997).

Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

Jo, S. H. et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010).

Pershin, Y. V. & Di Ventra, M. Memory effects in complex materials and nanoscale systems. Adv. Phys. 60, 145–227 (2011).

Riordan, M. Crystal Fire: The Birth of the Information Age Blackstone Audiobooks (1998).

Pierce, M. S. et al. Disorder-induced magnetic memory: experiments and theories. Phys. Rev. B 75, 144406 (2007).

Pierce, M. S. et al. Disorder-induced microscopic magnetic memory. Phys. Rev. Lett. 94, 017202 (2005).

Tybell, T., Paruch, P., Giamarchi, T. & Triscone, J. M. Domain wall creep in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 thin films. Phys. Rev. Lett. 89, 097601 (2002).

Rodriguez, B. J. et al. Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy. Appl. Phys. Lett. 86, 012906 (2005).

Paruch, P., Tybell, T. & Triscone, J. M. Nanoscale control of ferroelectric polarization and domain size in epitaxial Pb(Zr0.2Ti0.8)O3 thin films. Appl. Phys. Lett. 79, 530 (2001).

Cho, Y. et al. Tbit/inch2 ferroelectric data storage based on scanning nonlinear dielectric microscopy. Appl. Phys. Lett. 81, 4401 (2002).

Terabe, K. et al. Microscale to nanoscale ferroelectric domain and surface engineering of a near-stoichiometric LiNbO3 crystal. Appl. Phys. Lett. 82, 433 (2003).

Agronin, A. et al. Dynamics of ferroelectric domain growth in the field of atomic force microscope. J. Appl. Phys. 99, 104102 (2006).

Shur, V. Y., Ievlev, A. V., Nikolaeva, E. V., Shishkin, E. I. & Neradovskiy, M. M. Influence of adsorbed surface layer on domain growth in the field produced by conductive tip of scanning probe microscope in lithium niobate. J. Appl. Phys. 110, 052017 (2011).

Ievlev, A. V. et al. Intermittency, quasiperiodicity and chaos in probe-induced ferroelectric domain switching. Nat. Phys. 10, 59–66 (2014).

Polomoff, N., Premnath, R., Bosse, J. & Huey, B. Ferroelectric domain switching dynamics with combined 20 nm and 10 ns resolution. J. Mater. Sci. 44, 5189–5196 (2009).

Kan, Y., Lu, X., Wu, X. & Zhu, J. Domain reversal and relaxation in LiNbO3 single crystals studied by piezoresponse force microscope. Appl. Phys. Lett. 89, 262907 (2006).

Jesse, S., Baddorf, A. P. & Kalinin, S. V. Switching spectroscopy piezoresponse force microscopy of ferroelectric materials. Appl. Phys. Lett. 88, 062908 (2006).

Gruverman, A., Auciello, O. & Tokumoto, H. Imaging and control of domain structures in ferroelectric thin films via scanning force microscopy. Annu. Rev. Mater. Sci. 28, 101–123 (1998).

Dahan, D., Molotskii, M., Rosenman, G. & Rosenwaks, Y. Ferroelectric domain inversion: the role of humidity. Appl. Phys. Lett. 89, 152902 (2006).

Terabe, K. et al. Imaging and engineering the nanoscale-domain structure of a Sr0.61Ba0.39Nb2O6 crystal using a scanning force microscope. Appl. Phys. Lett. 81, 2044 (2002).

Bühlmann, S., Colla, E. & Muralt, P. Polarization reversal due to charge injection in ferroelectric films. Phys. Rev. B 72, 214120 (2005).

Abplanalp, M., Fousek, J. & Günter, P. Higher order ferroic switching induced by scanning force microscopy. Phys. Rev. Lett. 86, 5799–5802 (2001).

Kholkin, a. L., Bdikin, I. K., Shvartsman, V. V. & Pertsev, N. a. Anomalous polarization inversion in ferroelectrics via scanning force microscopy. Nanotechnology 18, 095502 (2007).

Kolosov, O., Gruverman, A., Hatano, J., Takahashi, K. & Tokumoto, H. Nanoscale visualization and control of ferroelectric domains by atomic force microscopy. Phys. Rev. Lett. 74, 4309–4312 (1995).

Kalinin, S. V., Morozovska, A. N., Chen, L. Q. & Rodriguez, B. J. Local polarization dynamics in ferroelectric materials. Rep. Prog. Phys. 73, 056502 (2010).

Jesse, S. & Kalinin, S. V. Band excitation in scanning probe microscopy: sines of change. J. Phys. D Appl. Phys. 44, 464006 (2011).

Ya. Shur, V., Chezganov, D. S., Nebogatikov, M. S., Baturin, I. S. & Neradovskiy, M. M. Formation of dendrite domain structures in stoichiometric lithium niobate at elevated temperatures. J. Appl. Phys. 112, 104113 (2012).

Shishkin, E. I. et al. Kinetics of the local polarization switching in stoichiometric LiTaO3 under electric field applied using the tip of scanning probe microscope. Ferroelectrics 340, 129–136 (2006).

Morita, T. & Cho, Y. Polarization reversal anti-parallel to the applied electric field observed using a scanning nonlinear dielectric microscopy. Appl. Phys. Lett. 84, 257–259 (2004).

Ievlev, A. V., Morozovska, A. N., Shur, V. Y. & Kalinin, S. V. Humidity effects on tip-induced polarization switching in lithium niobate. Appl. Phys. Lett. 104, 092908 (2014).

Eliseev, E. A., Kalinin, S. V., Jesse, S., Bravina, S. L. & Morozovska, A. N. Electromechanical detection in scanning probe microscopy: tip models and materials contrast. J. Appl. Phys. 102, 014109 (2007).

Wang, R. V. et al. Reversible chemical switching of a ferroelectric film. Phys. Rev. Lett. 102, 4 (2009).

Morozovska, A. N. et al. Ferroelectric domain triggers the charge modulation in semiconductors. J. Appl. Phys (in press).

Scrymgeour, D. A., Gopalan, V., Itagi, A., Saxena, A. & Swart, P. J. Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: Lithium niobate and lithium tantalate. Phys. Rev. B 71, 184110 (2005).

Feder, J. Fractals 283 (Springer (1988).

Cross, M. C. & Hohenberg, P. C. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993).

Wright, C. D., Liu, Y., Kohary, K. I., Aziz, M. M. & Hicken, R. J. Arithmetic and biologically-inspired computing using phase-change materials. Advanced Mater. 23, 3408–3413 (2011).