Ion etching of HgCdTe: Properties, patterns and use as a method for defect studies

Opto-Electronics Review - Tập 25 - Trang 148-170 - 2017
I.I. Izhnin1,2, K.D. Mynbaev3,4, A.V. Voitsekhovskii2, A.G. Korotaev2, O.I. Fitsych5, M. Pociask-Bialy6
1Scientific Research Company “Carat”, Lviv 79031, Ukraine
2National Research Tomsk State University, Tomsk, 634050, Russia
3Ioffe Institute, St. Petersburg 194021, Russia
4ITMO University, St. Petersburg 197101, Russia
5P. Sahaydachnyi National Army Academy, Lviv 79012, Ukraine
6Center for Microelectronics and Nanotechnology of the University of Rzeszow, Rzeszow 35-310, Poland

Tài liệu tham khảo

Lawson, 1959, Preparation and properties of HgTe and mixed crystals of HgTe-CdTe, J. Phys. Chem. Solids, 9, 325, 10.1016/0022-3697(59)90110-6 Shneider, 1960, Structure and properties of the HgTe-CdTe system, Sov. Phys. Solid State, 2, 2079 Rogalski, 2011, 876 K. Fischer, Method of ion etching Cd-Hg-Te semiconductors, US Patent 4128467 (1978). R.B. Withers, Method of manufacturing infrared detector elements, US Patent 4301591 (1979). Solzbach, 1980, Sputter cleaning and dry oxidation of CdTe, HgTe and Hg1−xCdxTe surface, Surf. Sci., 97, 191, 10.1016/0039-6028(80)90113-2 Stoltz, 2006, Examination of the effect of high-density plasmas on surface of HgCdTe, J. Electron. Mater., 35, 1461, 10.1007/s11664-006-0284-9 Smith, 2003, Inductively coupled plasma etching of HgCdTe, J. Electron. Mater., 32, 816, 10.1007/s11664-003-0076-4 Smith, 2003, Scalability of dry-etch processing for small unit-cell HgCdTe focal-plane-arrays”, J. Electron. Mater., 32, 821, 10.1007/s11664-003-0077-3 Srivastav, 2005, Overview of etching technologies used for HgCdTe, Opto-Electron. Rev., 13, 197 J.T.M. Wotherspoon, Methods of manufacturing a detector device, UK Patent GB 2095898 (1981). Ivanov-Omskii, 2003, Modification of Hg1−xCdxTe properties by low-energy ions, Semiconductors, 37, 1127, 10.1134/1.1619507 D. Shaw and P. Capper, “Conductivity Type Conversion”, in “Mercury Cadmium Telluride: Growth, Properties and Applications”, ed. by P. Capper, Wiley Series in Materials for Electronic and Optoelectronic Applications, P. Capper, S. Kasap, A. Willoughby, eds., (Chichester, J. Wiley & Sons, 2011), p. 297. Shaw, 2008, The kinetics of conductivity type conversion in HgCdTe by ion beam milling, J. Mater. Sci. Mater. Electron., 19, 965, 10.1007/s10854-007-9428-9 Izhnin, 2007, Conductivity type conversion in ion-milled p-Hg1−xCdxTe:As heterostructures grown by molecular beam epitaxy, Appl. Phys. Lett., 91, 132106, 10.1063/1.2789782 Brogowski, 1989, Modification of mercury cadmium telluride, mercury manganese telluride, mercury zinc telluride by ion etching, Phys. Status Solidi (a), 114, K37, 10.1002/pssa.2211140154 Rolland, 1992, p-to-n conversion in Hg1−xZnxTe by ion beam milling effect, J. Cryst. Growth, 117, 208, 10.1016/0022-0248(92)90746-6 Berchenko, 2003, Properties of n-layers formed by low energy ion beam milling of chalcogenides epitaxial films, Phys. Status Solidi (c), 872, 10.1002/pssc.200306259 Berchenko, 2005, Influence of the low energy ion beam milling on the electrical properties of InSb, Phys. Status Solidi (c), 2, 1418, 10.1002/pssc.200460478 Dvurechenskii, 1993, Inversion of the conduction of CdxHg1−xTe films subjected to a plasma treatment, Semiconductors, 27, 90 Blackman, 1987, Type conversion in CdHgTe by ion beam treatment, Electron. Lett., 23, 978, 10.1049/el:19870687 Brogowski, 1991, Ion beam milling effect on surface properties of HgCdTe, Electron Technol., 24, 93 Elkind, 1992, Ion mill damage in n-HgCdTe, J. Vac. Sci. Technol. B, 10, 1460, 10.1116/1.586272 Belas, 1993, Deep p-n junction in Hg1−xCdxTe created by ion milling, Semicond. Sci. Technol., 8, 1695, 10.1088/0268-1242/8/9/003 Belas, 1996, Type conversion of p-(HgCd)Te using H2/CH4 and Ar reactive ion etching, Semicond. Sci. Technol., 11, 1116, 10.1088/0268-1242/11/7/024 Belas, 1994, Ultrafast diffusion of Hg in Hg1−xCd−Te (x∼0.21), J. Cryst. Growth, 138, 940, 10.1016/0022-0248(94)90935-0 Belas, 1996, Determination of the migration energy of Hg interstitials in (HgCd)Te from ion milling experiments, J. Cryst. Growth, 159, 1117, 10.1016/0022-0248(95)00696-6 Belas, 2001, Dynamics of native point defects in H2 and Ar plasma-etched narrow gap (HgCd)Te, J. Cryst. Growth, 224, 52, 10.1016/S0022-0248(01)00855-7 Bahir, 1989, Ion beam milling effect on electrical properties of HgCdTe, J. Vac. Sci. Technol. A, 7, 348, 10.1116/1.576101 Siliquini, 1997, Scanning laser microscopy of reactive ion etching induced n-type conversion in vacancy-doped p-type HgCdTe, Appl. Phys. Lett., 70, 3443, 10.1063/1.119159 Ivanov-Omskii, 1990, Electrophysical properties of CdxHg1–xTe subjected to ion-beam treatment, Sov. Phys. Semicond., 24, 1379 Ivanov-Omskii, 1993, Hg1−xCdxTe doping by ion-beam treatment, Semicond. Sci. Technol., 8, 634, 10.1088/0268-1242/8/5/003 Mynbaev, 2002, Electrical properties of CdxHg1−xTe and ZnxCdyHg1−x−yTe modified by low-energy ion bombardment, Tech. Phys. Lett., 28, 955, 10.1134/1.1526895 Izhnin, 2005, Type conductivity conversion in MOCVD CdxHg1−xTe/GaAs hetero-structures under ion milling, Proc. SPIE, 5957, 595716, 10.1117/12.622113 Haakenaasen, 2000, Electron beam induced current study of ion beam milling type conversion in molecular beam epitaxy vacancy-doped CdxHg1−xTe, J. Electron. Mater., 29, 849, 10.1007/s11664-000-0236-8 Haakenaasen, 2002, Depth and lateral extension of ion milled p-n junctions in CdxHg1−xTe from electron beam induced current measurements, J. Appl. Phys., 91, 427, 10.1063/1.1419214 Bogoboyashchyy, 2004, Properties of MBE CdxHg1−xTe/GaAs structures modified by ion-beam milling, Phys. Status Solidi (c), 1, 355, 10.1002/pssc.200303947 Chandra, 2006, p to n conversion in SWIR mercury cadmium telluride with ion milling, J. Electron. Mater., 35, 1470, 10.1007/s11664-006-0286-7 Chandra, 2005, Deactivation of arsenic as an acceptor by ion implantation and reactivation by low-temperature anneal, J. Electron. Mater., 34, 864, 10.1007/s11664-005-0033-5 Bogoboyashchii, 2000, Mechanism for conversion of the type conductivity in p-Hg1−xCdxTe crystals upon bombardment by low-energy ions, Russ. Phys. J., 43, 627, 10.1023/A:1026630818471 Bogoboyashchyy, 2006, The nature of compositional dependence of p-n junction depth in ion-milled p-CdxHg1−xTe, Semicond. Sci. Technol., 21, 116, 10.1088/0268-1242/21/2/003 Bogoboyashchii, 1985, Kinetics of establishment of equilibrium between CdxHg1−xTe crystals and mercury vapour, Sov. Phys. Semicond., 19, 505 Shaw, 2000, Conductivity type conversion in Hg1−xCdxTe, J. Mater. Sci. Mater. Electron., 11, 169, 10.1023/A:1008989701564 Bogoboyashchyy, 2003, Mechanism for creation of the mercury diffusion source at type conductivity conversion in p-Hg1−xCdxTe under ion-beam milling, Proc. SPIE, 5126, 427, 10.1117/12.517392 Sher, 1991, HgCdTe status review with emphasis on correlations, native defects and diffusion, Semicond. Sci. Technol., 6, C59, 10.1088/0268-1242/6/12C/012 Stahle, 1992, Ion sputter effects on HgTe, CdTe, and HgCdTe, J. Vac. Sci. Technol. A, 10, 3239, 10.1116/1.577849 Bogoboyashchyy, 2004, Reaction constants for main cationic native defects in narrow-gap Hg1−xCdxTe crystals, J. Alloys Compd., 371, 97, 10.1016/j.jallcom.2003.06.010 Belas, 2002, Formation and propagation of p-n junction in p-(HgCd)Te caused by dry etching, J. Electron. Mater., 31, 738, 10.1007/s11664-002-0229-x Pociask, 2010, Ion milling-induced conductivity-type conversion in p-type HgCdTe MBE-grown films with graded-gap surface layers, Semicond. Sci. Technol., 25, 065012, 10.1088/0268-1242/25/6/065012 Pociask, 2009, Donor doping of HgCdTe for LWIR and MWIR structures fabricated with ion milling, Semicond. Sci. Technol., 24, 025031, 10.1088/0268-1242/24/2/025031 Izhnin, 2010, Ion milling-assisted study of defect structure of HgCdTe layers grown by liquid phase epitaxy on CdZnTe substrates, Opto-Electron. Rev., 18, 328, 10.2478/s11772-010-1016-9 Izhnin, 2012, Defect structure of HgCdTe films grown by molecular-beam epitaxy on Si substrates, Semicond. Sci. Technol., 27, 035001, 10.1088/0268-1242/27/3/035001 Antoszewski, 2000, Characterization of Hg0.7Cd0.3Te n- on p-type structures obtained by reactive ion etching induced p- to n conversion, J. Electron. Mater., 29, 837, 10.1007/s11664-000-0234-x Nguen, 2002, Transport properties of reactive-ion-etching-induced p-to-n type converted layers in HgCdTe, J. Electron. Mater., 31, 652, 10.1007/s11664-002-0214-4 Carey, 1985, TEM investigation of the differences in ion milling induced damage of Hg1−xCdxTe and CdTe heterojunctions, J. Vac. Sci. Technol. A, 3, 255, 10.1116/1.573212 Lunn, 1985, Ion beam milling of Cd0.2Hg0.8Te, J. Cryst. Growth, 73, 379, 10.1016/0022-0248(85)90316-1 Savitsky, 1998, Peculiarities of MCT etching in RF mercury glow discharge, Proc. SPIE, 3725, 299, 10.1117/12.344754 Izhnin, 2009, Long-term room-temperature relaxation of the defects induced in (Hg,Cd)Te by low-energy ions, Physica B, 404, 5025, 10.1016/j.physb.2009.08.217 Pociask, 2008, Electrical properties of n-HgCdTe heteroepitaxial layers modified by ion milling, Semiconductors, 42, 1413, 10.1134/S1063782608120075 Siliquini, 1998, Characterisation of reactive-ion-etching-induced type-conversion in p-type HgCdTe using scanning laser microscopy, J. Cryst. Growth, 184–185, 1219, 10.1016/S0022-0248(98)80255-8 Siliquini, 1998, Estimation of doping density in HgCdTe p-n junctions using scanning laser microscopy, Appl. Phys. Lett., 72, 52, 10.1063/1.120642 Smith, 1998, Mercury annealing of reactive ion etching induced p- to n-type conversion in extrinsically doped p-type HgCdTe, J. Appl. Phys., 83, 5555, 10.1063/1.367389 Mynbaev, 2006, Doping of epitaxial layers and heterostructures based on HgCdTe, Semiconductors, 40, 1, 10.1134/S1063782606010015 Bogoboyashchii, 2001, Mechanism for conversion of the conductivity type in arsenic-doped p-Hg1−xCdxTe subject to ionic etching, Russ. Phys. J., 44, 61, 10.1023/A:1011312902981 Berchenko, 2002, Defect structure rebuilding by ion beam milling of As and Sb doped p-CdxHg1−xTe, Phys. Status Solidi (b), 229, 279, 10.1002/1521-3951(200201)229:1<279::AID-PSSB279>3.0.CO;2-0 Berchenko, 2002, Type conductivity conversion in As, Sb doped p-CdxHg1−xTe under ion beam milling, Surf. Coat. Technol., 158–159C, 732, 10.1016/S0257-8972(02)00264-5 Bogoboyashchyy, 2006, Relaxation of electrical properties of n-type layers formed by ion milling in epitaxial HgCdTe doped with V-group acceptors, Semicond. Sci. Technol., 21, 1144, 10.1088/0268-1242/21/8/028 Belas, 2003, Time relaxation of points defects in p- and n-(HgCd)Te after ion beam milling, J. Electron. Mater., 32, 698, 10.1007/s11664-003-0055-9 Pociask, 2008, Ion milling-assisted study of defect structure of acceptor-doped HgCdTe heterostructures grown by molecular beam epitaxy, Semicond. Sci. Technol., 23, 095001, 10.1088/0268-1242/23/9/095001 Izhnin, 2010, Arsenic incorporation in MBE-grown HgCdTe studied with the use of ion milling, Phys. Status Solidi (c), 7, 1618, 10.1002/pssc.200983179 Izhnin, 2014, Defect study in molecular beam epitaxy-grown HgCdTe films with activated and unactivated arsenic, J. Appl. Phys., 115, 163501, 10.1063/1.4872246 Izhnin, 2015, Long-term stability of electron concentration in HgCdTe-based p-n junctions fabricated with ion etching, Infrared Phys. Technol., 73, 158, 10.1016/j.infrared.2015.09.019 Izhnin, 2013, Electrical properties of HgCdTe films grown by MOCVD and doped with As, Opto-Electron. Rev., 21, 220, 10.2478/s11772-013-0086-6 Berchenko, 2003, Type conductivity conversion in p-CdxHg1−xTe, Opto-Electron. Rev., 11, 93 Kinch, 2004, Arsenic-doped mid-wavelength infrared HgCdTe photodiodes, J. Electron. Mater., 33, 590, 10.1007/s11664-004-0051-8 Baker, 2001, Summary of HgCdTe 2D array technology in the UK, J. Electron. Mater., 30, 682, 10.1007/BF02665856 Bogoboyashchyy, 2005, Type of conductivity conversion in CdxHg1−xTe single crystal doped with 1 group dopants under ion milling, Appl. Phys., 48 Bogoboyashchyy, 2005, Conversion of conductivity type in Cu-doped Hg0.8Cd0.2Te crystals under ion beam milling, Semicond. Sci. Technol., 20, 726, 10.1088/0268-1242/20/8/013 Bogoboyashchyy, 2007, Conductivity type conversion under ion milling of narrow-gap HgCdTe crystals doped with Au and Ag, Semiconductors, 41, 804, 10.1134/S1063782607070068 Bogoboyashchii, 1987, Investigation of copper diffusion in CdxHg1−xTe single-crystals, Sov. Phys. Semicond., 21, 893 Yang, 2005, Annealing behavior of hydrogen-plasma-induced n-type HgCdTe, Appl. Phys. Lett., 87, 111905, 10.1063/1.2043239 Izhnin, 1998, Temperature stability of the IBM formed CdxHg1−xTe p-n structure, Proc. SPIE, 3890, 519, 10.1117/12.368411 Izhnin, 2005, Regularities of the CdxHg1−xTe p-n junction formation by ion milling, Proc. SPIE, 5957, 595713, 10.1117/12.621069 Pociask, 2010, Blue-shift in photoluminescence of ion-milled HgCdTe films and relaxation of defects induced by the milling, Thin Solid Films, 518, 3879, 10.1016/j.tsf.2009.10.156 Zha, 2007, Blueshift in photoluminescence and photovoltaic spectroscopy of the ion-milling formed n-on-p HgCdTe photodiodes, Appl. Phys. Lett., 90, 201112, 10.1063/1.2740107 Izhnin, 2005, Electrical characteristics relaxation of ion milled MCT layers, Proc. SPIE, 5881, 58810U, 10.1117/12.617389 Izhnin, 2015, Background donor concentration in HgCdTe, Opto-Electron. Rev., 23, 200, 10.1515/oere-2015-0029 Izhnin, 2012, Defects in HgCdTe grown by molecular beam epitaxy on GaAs substrates, Opto-Electron. Rev., 20, 62, 10.2478/s11772-012-0048-4 Izhnin, 2012, Electrical and optical properties of CdHgTe films grown by molecular-beam epitaxy on silicon substrates, Semiconductors, 46, 1341, 10.1134/S1063782612100065 Pociask, 2010, The study of HgCdTe MBE-grown structure with ion milling, Opto-Electron. Rev., 18, 338, 10.2478/s11772-010-1020-0 Belogorokhov, 2010, Raman scattering in CdHgTe epitaxial layers grown on CdZnTe substrates, Phys. Status Solidi (c), 7, 1624, 10.1002/pssc.200983215 Świątek, 2016, Electrical and optical studies of defect structure of HgCdTe films grown by molecular beam epitaxy, Russ. Phys. J., 59, 442, 10.1007/s11182-016-0792-x Garland, 2013, Arsenic p-doping of HgCdTe grown by molecular beam epitaxy (MBE): a solved problem?, J. Electron. Mater., 42, 3331, 10.1007/s11664-013-2739-0 Ballet, 2009, Extended X-ray absorption fine structure investigation of arsenic in HgCdTe: the effect of the activation anneal, J. Electron. Mater., 38, 1726, 10.1007/s11664-009-0810-7 Sidorov, 2008, Effect of the arsenic cracking zone temperature on the efficiency of arsenic incorporation in CdHgTe films in molecular-beam epitaxy, Semiconductors, 42, 651, 10.1134/S1063782608060043 Kinch, 2015, The future of infrared; III–Vs or HgCdTe?, J. Electron. Mater., 44, 2969, 10.1007/s11664-015-3717-5 Capper, 1996, Matrix and impurity element distributions in CdHgTe (CMT) and (Cd,Zn)(Te,Se) compounds by chemical analysis, J. Cryst. Growth, 161, 104, 10.1016/0022-0248(95)00619-2 Varavin, 2003, HgCdTe epilayers on GaAs: growth and devices, Opto-Electron. Rev., 11, 99 Varavin, 2001, Donor defects in epitaxial CdHgTe films grown with molecular-beam epitaxy method, Avtometriya, 9