Ion acoustic solitons and supersolitons in a magnetized plasma with nonthermal hot electrons and Boltzmann cool electrons

Physics of Plasmas - Tập 21 Số 8 - 2014
O. R. Rufai1,2, R. Bharuthram1,2, S. V. Singh3,4, G. S. Lakhina3,4
12Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai, India
2University of the Western Cape 1 , Belville, South Africa
31University of the Western Cape, Belville, South Africa
4Indian Institute of Geomagnetism 2 , New Panvel (W), Navi Mumbai, India

Tóm tắt

Arbitrary amplitude, ion acoustic solitons, and supersolitons are studied in a magnetized plasma with two distinct groups of electrons at different temperatures. The plasma consists of a cold ion fluid, cool Boltzmann electrons, and nonthermal energetic hot electrons. Using the Sagdeev pseudo-potential technique, the effect of nonthermal hot electrons on soliton structures with other plasma parameters is studied. Our numerical computation shows that negative potential ion-acoustic solitons and double layers can exist both in the subsonic and supersonic Mach number regimes, unlike the case of an unmagnetized plasma where they can only exist in the supersonic Mach number regime. For the first time, it is reported here that in addition to solitions and double layers, the ion-acoustic supersoliton solutions are also obtained for certain range of parameters in a magnetized three-component plasma model. The results show good agreement with Viking satellite observations of the solitary structures with density depletions in the auroral region of the Earth's magnetosphere.

Từ khóa


Tài liệu tham khảo

1988, Phys. Rev. Lett., 61, 82, 10.1103/PhysRevLett.61.82

1992, IEEE Trans. Plasma Sci., 20, 756, 10.1109/27.199524

1994, Geophys. Res. Lett., 21, 1827, 10.1029/94GL00886

1997, Phys. Rev. Lett., 79, 2053, 10.1103/PhysRevLett.79.2053

2010, Phys. Plasmas, 17, 010701, 10.1063/1.3286438

1989, Phys. Scr., 39, 787, 10.1088/0031-8949/39/6/023

1995, Geophys. Res. Lett., 22, 2709, 10.1029/95GL02781

1986, Phys. Scr., 34, 732, 10.1088/0031-8949/34/6B/002

1986, Phys. Fluids, 29, 3214, 10.1063/1.865839

1987, Phys. Rev. A, 35, 1433, 10.1103/PhysRevA.35.1433

2003, New J. Phys., 5, 28, 10.1088/1367-2630/5/1/328

2006, Adv. Space Res., 37, 1373, 10.1016/j.asr.2005.05.129

2008, Adv. Space Res., 41, 1666, 10.1016/j.asr.2007.05.064

2010, EPL, 91, 15001, 10.1209/0295-5075/91/15001

2010, Int. J. Appl. Math. Mech., 6, 47

2012, Phys. Plasmas, 19, 122308, 10.1063/1.4771574

2014, Commun. Nonlinear Sci. Numer. Simulat., 19, 1338, 10.1016/j.cnsns.2013.09.024

1997, Phys. Rev. E, 55, 2

2004, Nonlinear Processes Geophys., 11, 275, 10.5194/npg-11-275-2004

2007, 4139

2009, Phys. Plasmas, 16, 063708, 10.1063/1.3152324

2010, Phys. Plasmas, 17, 092904, 10.1063/1.3481465

2010, Phys. Plasmas, 17, 042301, 10.1063/1.3374034

2010, Adv. Space Res., 45, 785, 10.1016/j.asr.2009.10.017

2011, Phys. Plasmas, 18, 062304, 10.1063/1.3591343

2011, World Acad. Sci., Eng., Tech., 81, 997

2011, Phys. Plasmas, 18, 122306, 10.1063/1.3671955

2009, Phys. Plasmas, 16, 094701, 10.1063/1.3213388

2010, Phys. Plasmas, 17, 032310, 10.1063/1.3322895

2011, Phys. Plasmas, 18, 024502, 10.1063/1.3559450

2011, Phys. Plasmas, 18, 072902, 10.1063/1.3606365

2011, Phys. Plasmas, 18, 082302, 10.1063/1.3620413

2011, Nonlinear Processes Geophys., 18, 627, 10.5194/npg-18-627-2011

2011, Phys. Scr., 84, 025507, 10.1088/0031-8949/84/02/025507

2013, Phys. Plasmas, 20, 012306, 10.1063/1.4776710

2003, Space Sci. Rev., 107, 361, 10.1023/A:1025589620768

2000, Astrophys. J., 528, 509, 10.1086/308151

1993, J. Geophys. Res., 98, 11391, 10.1029/92JA02563

Lysak, 1993, Auroral Plasma Daynamics, 10.1029/GM080

2000, Planet. Space Sci., 48, 133, 10.1016/S0032-0633(99)00091-4

2001, J. Geophys. Res., 106, 227, 10.1029/2000JA000042

1998, Geophys. Res. Lett., 25, 4099, 10.1029/1998GL900108

1996, Phys. Scr., T63, 80, 10.1088/0031-8949/1996/T63/012

2000, Eur. Phys. J. D, 11, 143, 10.1007/s100530070115

2007, Phys. Plasmas, 14, 012307, 10.1063/1.2428281

2010, Plasma Phys. Controlled Fusion, 52, 075009, 10.1088/0741-3335/52/7/075009

2004, Eur. Phys. J. D, 31, 91, 10.1140/epjd/e2004-00121-4

2010, Phys. Plasmas, 17, 102312, 10.1063/1.3494245

2013, Astrophys. Space Sci., 344, 135, 10.1007/s10509-012-1309-x

1989, Phys. Lett. A, 136, 155, 10.1016/0375-9601(89)90196-5

2012, IEEE Trans. Plasma Sci., 40, 1429, 10.1109/TPS.2012.2189026

2012, High Energy Chem., 46, 349, 10.1134/S0018143912060033

2012, Plasma Phys. Rep., 38, 909, 10.1134/S1063780X12100054

2013, Phys. Plasmas, 20, 082309, 10.1063/1.4818888

2013, Phys. Plasmas, 20, 012302, 10.1063/1.4775085

2013, Phys. Rev. E, 87, 043107, 10.1103/PhysRevE.87.043107

2013, Phys. Plasmas, 20, 083705, 10.1063/1.4818439

2014, Phys. Plasmas, 21, 062311, 10.1063/1.4884791

2014, Phys. Plasmas, 21, 062303, 10.1063/1.4881471

1981, Phys. Fluids, 24, 430, 10.1063/1.863389

2002, Nonlinear Processes Geophys., 9, 25, 10.5194/npg-9-25-2002

2006, Earth, Planets Space, 58, 1227, 10.1186/BF03352014

2008, Phys. Plasmas, 15, 013703, 10.1063/1.2831025

1998, J. Geophys. Res., 103, 4261, 10.1029/97JA00338