Nghiên cứu về hồ đua mới với bánh lái nghiêng thông qua mô phỏng và thí nghiệm nuôi vi tảo

Bioprocess and Biosystems Engineering - Tập 39 - Trang 169-180 - 2015
Fanxue Zeng1, Jianke Huang2, Chen Meng, Fachao Zhu1, Jianpei Chen1, Yuanguang Li2
1State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
2State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China

Tóm tắt

Hồ đua mở hiện nay là các bể phản ứng quy mô lớn được sử dụng phổ biến nhất cho việc nuôi cấy vi tảo. Để tránh tình trạng vi tảo tích tụ, bánh lái là phương pháp được sử dụng rộng rãi nhất để tuần hoàn và trộn lẫn môi trường văn hóa. Trong bài báo này, một mô phỏng số sử dụng động lực học chất lỏng tính toán (CFD) đã được thực hiện để điều tra các đặc tính thủy động lực học của hồ đua mở với các loại bánh lái khác nhau (bánh lái truyền thống và bánh lái mới với góc nghiêng đặc biệt của các cánh). Kỹ thuật chụp ảnh hạt (PIV) đã được sử dụng để xác thực độ tin cậy của mô hình CFD. Kết quả mô phỏng CFD cho thấy hồ đua mới với góc nghiêng 15° của các cánh có hiệu quả trộn lẫn tốt nhất dưới cùng một mức tiêu thụ năng lượng. Cuối cùng, kết quả từ các thí nghiệm nuôi vi tảo cho thấy tốc độ phát triển của Chlorella pyrenoidosa trong hồ đua mới với góc nghiêng 15° của các cánh cao hơn so với các bể phản ứng truyền thống. Kết quả từ các thí nghiệm nuôi và mô phỏng CFD là giống nhau. Do đó, một chiếc bánh lái mới với góc nghiêng 15° của các cánh đã được phát triển để nâng cao việc nuôi cấy vi tảo.

Từ khóa

#hồ đua mở #vi tảo #động lực học chất lỏng tính toán #bánh lái nghiêng #Chlorella pyrenoidosa

Tài liệu tham khảo

Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648 Huang JJ, Xia J, Jiang W, Li Y, Li J (2015) Biodiesel production from microalgae oil catalyzed by a recombinant lipase. Bioresour Technol 180:47–53 Brune DE, Lundquist TJ, Benemann JR (2012) Microalgal biomass for greenhouse gas reductions: potential for replacement of fossil fuels and animal feeds. J Environ Eng 135:1136–1144 Borowitzka MA, Moheimani NR (2013) Algae for biofuels and energy. Springer, Netherlands Mendoza JL, Granados MR, Godos ID, Acién FG, Molina E, Banks C, Heaven S (2013) Fluid-dynamic characterization of real-scale raceway reactors for microalgae production. Biomass Bioenergy 54:267–275 Fox RO (2006) CFD models for analysis and design of chemical reactors. Adv Chem Eng 31:231–305 Xia JY, Wang SJ, Zhang SL (2008) Computational investigation of fluid dynamics in a recently developed centrifugal impeller bioreactor. Biochem Eng J 38:406–413 Perner-Nochta I, Posten C (2007) Simulation of light intensity variation in photobioreactors. J Biotechnol 131:276–285 Perner I, Posten C, Broneske J (2003) CFD Optimization of a plate photobioreactor used for cultivation of microalgae. Eng Life Sci 3:287–291 Sato T, Yamada D, Hirabayashi S (2010) Development of virtual photobioreactor for microalgae culture considering turbulent flow and flashing light effect. Energy Convers Manag 51:1196–1201 Sato T, Usuib S, Tsuchiya Y (2006) Invention of outdoor closed type photobioreactor for microalgae. Energy Convers Manag 47:791–799 Su Z, Kang R, Shi S (2010) Study on the destabilization mixing in the flat plate photobioreactor by means of CFD. Biomass Bioenergy 34:1879–1884 Yu G, Li Y, Shen G (2009) A novel method using CFD to optimize the inner structure parameters of flat photobioreactors. J Appl Phycol 21:719–727 Pruvost J, Pottier L, Legrand J (2006) Numerical investigation of hydrodynamic and mixing conditions in a torus photobioreactor. Chem Eng Sci 61:4476–4489 Wu LB, Li Z, Song YZ (2010) Hydrodynamic conditions in designed spiral photobioreactors. Bioresour Technol 101:298–303 Wu LB, Li Z, Song YZ (2009) Numerical investigation of flow characteristics and irradiance history in a novel photobioreactor. Afr J Biotechnol 8:4672–4679 Wang HF, Liu ZH, Guo FS, Zhang CG (2004) Estimation of turbulent kinetic energy dissipation rate In channel flow by PIV. J Chem Ind Eng 55:1067–1071 Jakubowski M, Wyczalkowski W, Poreda A (2015) Flow in a symmetrically filled whirlpool: CFD modelling and experimental study based on particle image velocimetry (PIV). J Food Eng 145:64–72 Sultana T, Morrison G, Taylor R, Rosengarten G (2015) Numerical and experimental study of a solar micro concentrating collector. Sol Energy 112:20–29 Amokrane A, Charton S, Lamadie S, Paisant JF, Puel F (2014) Single-phase flow in a pulsed column: particle image velocimetry validation of a CFD based model. Chem Eng Sci 114:40–50 Stogiannis IA, Passos AD, Mouza AA, Paras SV, Pěnkavová V, Tihon J (2014) Flow investigation in a microchannel with a flow disturbing rib. Chem Eng Sci 119:65–76 Pruvost J, Pottier L, Legrand J (2006) Numerical investigation of hydrodynamic and mixing conditions in a torus photobioreactor. Chem Eng Sci 61:4476–4489 Lin C, Li YG, Wang WL, Shen GM, Chen JP, Wu HX, Huang JK (2009) Numerical and experimental investigation of a novel flat-photobioreactor with multistage-separator. J Chem Eng Chin Univ 23:263–269 Chiaramonti D, Prussi M, Casini D, Tredici MR, Rodolfi L, Bassi N, Zittelli GC, Bondioli P (2013) Review of energy balance in raceway ponds for microalgae cultivation: re-thinking a traditional system is possible. Appl Energy 102:101–111 Ketheesan B, Nirmalakhandan N (2011) Development of a new airlift-driven raceway reactor for algal cultivation. Appl Energy 88:3370–3376 Hreiz R, Sialve B, Morchain J (2014) Experimental and numerical investigation of hydrodynamics in raceway reactors used for algaculture. Chem Eng J 250:230–239 Chung K, Barigou M, Simmons M (2007) Reconstruction of 3-D flow field inside miniature stirred vessels using a 2-D PIV technique. Chem Eng Res Des 85:560–567 Sheng J, Meng H, Fox R (2000) A large eddy PIV method for turbulence dissipation rate estimation. Chem Eng Sci 55:4423–4434 Zhu F, Huang J, Chen J, Li Y (2012) CFD simulation and optimization of an open raceway photo-bioreactor. Chem Ind Eng Prog 31:1184–1192 Meng C, Huang J, Ye C (2015) Comparing the performances of circular ponds with different impellers by CFD simulation and microalgae culture experiments. Bioprocess Biosyst Eng 38:1347–1363 Ge C, Wang J, Gu X, Feng L (2014) Application of PIV and CFD in impeller design and optimization. Chem Pharma Eng 35:29–33 Su ZF, Kang RJ, Shi SY, Cong W, Cai ZL (2010) Study on the destabilization mixing in the flat plate photobioreactor by means of CFD. Biomass Bioenergy 34:1879–1884 Huang J, Li Y, Wan M, Yan Y, Feng F, Qu X, Wang J, Shen G, Li W, Fan J (2014) Novel flat-plate photobioreactors for microalgae cultivation with special mixers to promote mixing along the light gradient. Bioresour Technol 159:8–16 Xu L, Liu R, Wang F, Liu CZ (2012) Development of a draft-tube airlift bioreactor for Botryococcus braunii with an optimized inner structure using computational fluid dynamics. Bioresour Technol 119:300–305 Sompech K, Chisti Y, Srinophakun T (2012) Design of raceway ponds for producing microalgae. Rev Environ Sci Bio 3:387–397 Han F, Huang J, Li Y, Wang W, Fan J, Shen G (2012) Enhancement of microalgal biomass and lipid productivities by a model of photoautotrophic culture with heterophic cells as seed. Bioresour Technol 118:431–437 Hou SD, Zhang Z, Wang YC, Shi LT (2000) Numerical simulation of turbulent flow in stirred tank agitated by axial impeller. J Chem Ind Eng 51:70–76 David C, Matteo P, David C, Mario R, Tredici Liliana R, Niccolo B, Graziella CZ, Paolo B (2013) Review of energy balance in raceway ponds for microalgae cultivation: re-thinking a traditional system is possible. Appl Energ 102:101–111