Investigation of water adsorption and thermodynamic properties of stevia powder
Tóm tắt
Stevia rebaudiana is a natural non-caloric substitute to conventional sugar. Moisture adsorption isotherms of stevia powder, a sweet plant, were investigated at three different temperatures (30, 40 and 50 °C) using a gravimetric technique. The sorption isotherms were found to be typical type II sigmoid with the sorption capacity decreasing with increasing temperature. Experimental data were fitted using GAB model, the monolayer moisture content tended to decrease as temperature increased. Moreover, these experimental data curves allow us to calculate the value of the optimal water activity for the conservation and to determine the surface area of powder studied. The isosteric heat of sorption, sorption entropy and spreading pressure were determined as a function of moisture content. The net isosteric heat of adsorption and differential entropy decreased with increasing moisture contents. A plot of differential heat versus entropy satisfied the enthalpy–entropy compensation theory. The spreading pressures increased with increasing water activity but decreased with increasing temperature.
Tài liệu tham khảo
S. Singh, V. Garg, D. Yadav, N. Sharma, In-vitro antioxidative and antibacterial activities of various parts of Stevia rebaudiana (Bertoni). Int. J. Pharm. Pharm. Sci. 4, 468–473 (2012)
D. Midmore, A. Rank, A new rural industry—Stevia—to replace imported chemical sweeteners. In: Rural Industries Research and Development Corporation, pp. 1–55 (2002)
J.M.C. Geuns, P. Augustijns, R. Mols, J.G. Buyse, B. Driessen, Metabolism of stevioside in pigs and intestinal absorption characteristics of stevioside, rebaudioside A and steviol. Food Chem. Toxicol. 41, 1599–1607 (2003). https://doi.org/10.1016/S0278-6915(03)00191-1
J.M.C. Geuns, R.D. Malheiros, V.M.B. Moraes, E.M.P. Decuypere, F. Compernolle, J.G. Buyse, Metabolism of stevioside by chickens. J. Agric. Food Chem. 51, 1095–1101 (2003). https://doi.org/10.1021/jf020835o
A. Aboudrare, Une nouvelle plante sucrée au Maroc. Stevia rebaudiana, PNTTA. Transf. Technol. Agric. 174, 1–6 (2009)
M.A. Al-Mahasneh, T.M. Rababah, W. Yang, Moisture sorption thermodynamics of defatted sesame meal (DSM). J. Food Eng. 81, 735–740 (2007). https://doi.org/10.1016/j.jfoodeng.2007.01.010
B. Polatoǧlu, A.V. Beşe, M. Kaya, N. Aktaş, Moisture adsorption isotherms and thermodynamics properties of sucuk (Turkish dry-fermented sausage). Food Bioprod. Process. 89, 449–456 (2011). https://doi.org/10.1016/j.fbp.2010.06.003
R. Lemus-Mondaca, A. Vega-Galvez, N.O. Moraga, S. Astudillo, Dehydration of Stevia rebaudiana Bertoni leaves: kinetics, modeling and energy features. J. Food Process. Preserv. 39, 508–520 (2015). https://doi.org/10.1111/jfpp.12256
G.N. Rao, P.P. Rao, K. Balaswamy, A. Satyanarayana, Antioxidant activity of Stevia (Stevia rebaudiana L.) leaf powder and a commercial stevioside powder. J. Food Pharm. Sci. 2, 32–38 (2014)
A.J. Kumar, R.R.B. Singh, G.R. Patil, A.A. Patel, Effect of temperature on moisture desorption isotherms of kheer. LWT Food Sci. Technol. 38, 303–310 (2005). https://doi.org/10.1016/j.lwt.2003.10.009
W.A.M. McMinn, A.H. Al-Muhtaseb, T.R.A. Magee, Enthalpy-entropy compensation in sorption phenomena of starch materials. Food Res. Int. 38, 505–510 (2005). https://doi.org/10.1016/j.foodres.2004.11.004
O.O. Fasina, Thermodynamic properties of sweetpotato. J. Food Eng. 75, 149–155 (2006). https://doi.org/10.1016/j.jfoodeng.2005.04.004
L. Greenspan, Humidity fixed points of binary saturated aqueous solutions. J. Res. Natl. Bur. Stand. A 81A, 89 (1977). https://doi.org/10.6028/jres.081A.011
P. Yogendrarajah, S. Samapundo, F. Devlieghere, S. De Saeger, B. De Meulenaer, Moisture sorption isotherms and thermodynamic properties of whole black peppercorns (Piper nigrum L.). LWT Food Sci. Technol. 64, 177–188 (2015). https://doi.org/10.1016/j.lwt.2015.05.045
S. Yanniotis, J. Blahovec, Model analysis of sorption isotherms. LWT Food Sci. Technol. 42, 1688–1695 (2009). https://doi.org/10.1016/j.lwt.2009.05.010
A.E. Delgado, D.W. Sun, Desorption isotherms for cooked and cured beef and pork. J. Food Eng. 51, 163–170 (2002). https://doi.org/10.1016/S0260-8774(01)00053-X
H. Yan, B. Cai, Y. Cheng, G. Guo, D. Li, X. Yao, X. Ni, G.O. Phillips, Y. Fang, F. Jiang, Mechanism of lowering water activity of konjac glucomannan and its derivatives. Food Hydrocoll. 26, 383–388 (2012). https://doi.org/10.1016/j.foodhyd.2011.02.018
V.R. Sinija, H.N. Mishra, Moisture sorption isotherms and heat of sorption of instant (soluble) green tea powder and green tea granules. J. Food Eng. 86, 494–500 (2008). https://doi.org/10.1016/j.jfoodeng.2007.10.026
K. Foo, B. Hameed, Insights into the modeling of adsorption isotherm systems. Pet. Coal 156, 2–10 (2010). https://doi.org/10.1016/j.cej.2009.09.013
A. Ferradji, A. Malek, Isothermes d’Adsorption des Abricots Secs à 25 °C et 45 °C. Rev. Des Energies Renouvelables 8, 39–48 (2005)
E. Tsami, Net isosteric heat of sorption in dried fruits. J. Food Eng. 14, 327–335 (1991). https://doi.org/10.1016/0260-8774(91)90022-K
N. Abdenouri, A. Idlimam, M. Kouhila, Sorption isotherms and thermodynamic properties of powdered milk. Chem. Eng. Commun. 197, 1109–1125 (2010). https://doi.org/10.1080/00986440903412936
R.J. Aguerre, C. Suarez, P.E. Viollaz, Enthalpy–entropy compensation in sorption phenomena: application to the prediction of the effect of temperature on food isotherms. J. Food Sci. 51, 1547–1549 (1986). https://doi.org/10.1111/j.1365-2621.1986.tb13856.x
A.L. Gabas, F.C. Menegalli, J. Telis-Romero, Water sorption enthalpy-entropy compensation based on isotherms of plum skin and pulp. J. Food Sci. 65, 680–684 (2000). https://doi.org/10.1111/j.1365-2621.2000.tb16072.x
M.D. Liébanes, J.M. Aragón, M.C. Palancar, G. Arévalo, D. Jiménez, Equilibrium moisture isotherms of two-phase solid olive oil by-products: adsorption process thermodynamics. Colloids Surf. A 282–283, 298–306 (2006). https://doi.org/10.1016/j.colsurfa.2006.03.025
S. Mghazli, A. Idlimam, M. Mahrouz, L. Lahnine, N. Hidar, M. Ouhammou, M. Mouhib, S. Zantar, M. Bouchdoug, Comparative moisture sorption isotherms, modelling and isosteric heat of sorption of controlled and irradiated Moroccan rosemary leaves. Ind. Crops Prod. 88, 28–35 (2016). https://doi.org/10.1016/j.indcrop.2016.02.050
L. Lahnine, A. Idlimam, M. Mahrouz, A. Jada, H. Hanine, M. Mouhib, S. Zantar, M. Kouhila, Adsorption measurements and modeling of thyme treated with gamma irradiation and thermal-biochemical treatment. Ind. Crops Prod. (2015). https://doi.org/10.1016/j.indcrop.2016.02.049
L. Lahnine, A. Idlimam, M. Mahrouz, A. Jada, M. Kouhila, H. Hanine, M. Bouchdoug, Comparative sorption isotherms of conserved Thymus satureioides. Moroccan J. Chem. 4, 128–139 (2016)
M. Barati, D. Zare, A. Zomorodian, Moisture sorption isotherms and thermodynamic properties of safflower seed using empirical and neural network models. J. Food Meas. Charact. 10, 236–246 (2016). https://doi.org/10.1007/s11694-015-9298-4
C.S. Ethmane Kane, M. Kouhila, A. Lamharrar, A. Idlimam, M. Mimet, Moisture sorption isotherms and thermodynamic properties of tow mints: Mentha pulegium and Mentha rotundifolia. Int. J. Food Sci. Technol. 11, 181–195 (2008). https://doi.org/10.1111/j.1365-2621.2008.01716.x
S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)
C. van den Berg, S. Bruin, Water activity and its estimation in food systems: theoretical aspects, in Water Activity: Influences on Food Quality, ed. by L.B. Rockland, G.F. Stewart (Academic Press, New York, 1981), pp. 147–177
D. Argyropoulos, J. Müller, Effect of convective-, vacuum- and freeze drying on sorption behaviour and bioactive compounds of lemon balm (Melissa officinalis L.). J. Appl. Res. Med. Aromat. Plants 1, 59–69 (2014). https://doi.org/10.1016/j.jarmap.2014.06.001
L. Červenka, L. Hloušková, S. Žabčíková, Moisture adsorption isotherms and thermodynamic properties of green and roasted Yerba mate (Ilex paraguariensis). Food Biosci. 12, 122–127 (2015). https://doi.org/10.1016/j.fbio.2015.10.001
R. Martínez-Las Heras, A. Heredia, M.L. Castelló, A. Andrés, Moisture sorption isotherms and isosteric heat of sorption of dry persimmon leaves. Food Biosci. 7, 88–94 (2014). https://doi.org/10.1016/j.fbio.2014.06.002
B.S. Sangeeta, Hathan, Sorption behavior, thermodynamic properties and storage stability of ready-to-eat Elephant Foot Yam (Amorphophallus spp.) product: physic-chemical properties, minerals, total dietary fiber and phenolic content of stored product. J. Food Meas. Charact. 11, 401–416 (2017). https://doi.org/10.1007/s11694-016-9408-y
A. Zungur Bastıoğlu, M. Koç, F. Kaymak, Ertekin, Moisture sorption isotherm of microencapsulated extra virgin olive oil by spray drying. J. Food Meas. Charact. 11, 1295–1305 (2017). https://doi.org/10.1007/s11694-017-9507-4
L.H. Mosquera, G. Moraga, N. Martínez-Navarrete, Critical water activity and critical water content of freeze-dried strawberry powder as affected by maltodextrin and arabic gum. Food Res. Int. 47, 201–2016 (2012). https://doi.org/10.1016/j.foodres.2011.05.019
Q. Rao, T.P. Labuza, Effect of moisture content on selected physicochemical properties of two commercial hen egg white powders. Food Chem. 132, 373–384 (2012). https://doi.org/10.1016/j.foodchem.2011.10.107
M.D. Torres, R. Moreira, F. Chenlo, M.J. Vázquez, Water adsorption isotherms of carboxymethyl cellulose, guar, locust bean, tragacanth and xanthan gums. Carbohydr. Polym. 89, 592–598 (2012). https://doi.org/10.1016/j.carbpol.2012.03.055
M.O. Oluwamukomi, Adsorption isotherm modeling of soy-melon-enriched and un-enriched “gari” using GAB equation. J. Food Sci. 3, 117–124 (2009)
S. Simal, A. Femenia, A. Castell-Palou, C. Rossello, Water desorption thermodynamic properties of pineapple. J. Food Eng. 80, 1293–1301 (2007). https://doi.org/10.1016/j.jfoodeng.2006.10.001
L.E. Kurozawa, R.A. de Oliveira, M.D. Hubinger, K.J. Park, Thermodynamic properties of water desorption of papaya. J. Food Process. Preserv. 39, 2412–2420 (2015). https://doi.org/10.1111/jfpp.12491
P. Correa, Evaluation of thermodynamic properties using GAB model to describe the desorption process of cocoa beans. Int. J. Food Sci. Technol. (2011). https://doi.org/10.1111/j.1365-2621.2011.02719.x
A.L.D. Goneli, P.C. Corrêa, G.H.H. Oliveira, P.C. Afonso, Júnior, Water sorption properties of coffee fruits, pulped and green coffee. LWT Food Sci. Technol. 50, 386–391 (2013). https://doi.org/10.1016/j.lwt.2012.09.006
M. Edrisi Sormoli, T.A.G. Langrish, Moisture sorption isotherms and net isosteric heat of sorption for spray-dried pure orange juice powder. LWT Food Sci. Technol. 62, 875–882 (2015). https://doi.org/10.1016/j.lwt.2014.09.064
S.Y. Quek, N.K. Chok, P. Swedlund, The physicochemical properties of spray-dried watermelon powders. Chem. Eng. Process. 46, 386–392 (2007). https://doi.org/10.1016/j.cep.2006.06.020
A. Idlimam, A. Lamharrar, N. Abdenouri, C.S. Ethmane Kane, S. Akkad, A. Jamali, M. Kouhila, Thermodynamic properties and moisture sorption isotherms of Argania spinosa and Zygophyllum gaetulum. J. Agron. 7, 1–14 (2008)
A. Jamali, M. Kouhila, L.A. Mohamed, A. Idlimam, A. Lamharrar, Moisture adsorption–desorption isotherms of Citrus reticulata leaves at three temperatures. J. Food Eng. 77, 71–78 (2006). https://doi.org/10.1016/j.jfoodeng.2005.06.045
H. Machhour, A. Idlimam, M. Mahrouz, I. El Hadrami, M. Kouhila, Sorption isotherms and thermodynamic properties of peppermint tea (Mentha piperita) after thermal and biochemical treatment. J. Mater. Environ. Sci. 3, 232–247 (2012)
A. Lamharrar, A. Idlimam, M. Cherkaoui, L. Lahnine, M. Kouhila, Thermodynamic properties and modeling of sorption isotherms for longer storage of Urtica urens leaves. Int. J. Mod. Eng. Res. 4, 23–30 (2014)
T.P. Labuza, B. Altunakar, Water Activity Prediction and Moisture Sorption Isotherms (Wiley, New York, 2008). https://doi.org/10.1002/9780470376454.ch5
P. Fellows, Food Processing Technology: Principles and Practice (CRC Press, Boca Raton, 2009). http://www.sciencedirect.com/science/book/9781845692162. Accessed 5 Mar 2017
S. Lahsasni, M. Kouhila, M. Mahrouz, Adsorption-desorption isotherms and heat of sorption of prickly pear fruit (Opuntia ficus indica). Energy Convers. Manag. 45, 249–261 (2004). https://doi.org/10.1016/S0196-8904(03)00133-X
L. Lahnine, A. Idlimam, M. Mahrouz, M. Kouhila, H. Hanine, M. Mouhib, S. Zantar, A. Jaouad, Thermodynamical properties of conserved thyme after gamma irradiation and thermal-biochemical treatment. J. Mater. Environ. Sci. 6, 2418–2426 (2015)
O. Bensebia, K. Allia, Analysis of adsorption-desorption moisture isotherms of rosemary leaves. J. Appl. Res. Med. Aromat. Plants 3, 79–86 (2016). https://doi.org/10.1016/j.jarmap.2016.01.005
C. Carvalho Lago, C.P.Z. Norena, Thermodynamic analysis of sorption isotherms of dehydrated yacon (Smallanthus sonchifolius) bagasse. Food Biosci. 12, 26–33 (2015). https://doi.org/10.1016/j.fbio.2015.07.001
Y.N. NkoloMeze’e, J. Noah Ngamveng, S. Bardet (2008) Effect of enthalpy-entropy 637 compensation during sorption of water vapour in tropical woods: The case of Bubinga 638 (Guibourtia Tessmanii J. Léonard; G. Pellegriniana J.L.). Thermochim. Acta 468, 1–5. https://doi.org/10.1016/j.tca.2007.11.002
A.D. Goneli, P.C. Corrêa, G.H.H. Oliveira, F.M. Botelho, Water desorption and thermodynamic properties of okra seeds. Trans. ASABE 53, 191–197 (2010). https://doi.org/10.13031/2013.29486
A.L.D. Goneli, P.C. Corrêa, G.H.H. De Oliveira, C.F. Gomes, F.M. Botelho, Water sorption isotherms and thermodynamic properties of pearl millet grain. Int. J. Food Sci. Technol. 45, 828–838 (2010). https://doi.org/10.1111/j.1365-2621.2010.02208.x
R.R. Krug, W.G. Hunter, R.A. Grieger, Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis. J. Phys. Chem. 80, 2335–2341 (1976). https://doi.org/10.1021/j100562a006
M. Noshad, M. Mohebbat, F. Shahidi, A.M. Seyed, Effect of osmosis and ultrasound pretreatment on the moisture adsorption isotherms of quince. Food Bioprod. Process. 90, 266–274 (2012). https://doi.org/10.1016/j.fbp.2011.06.002
S.P.S. Rawat, D.P. Khali, Enthalpy-entropy compensation during sorption of water in wood. J. Appl. Polym. Sci. 60, 787–790 (1996)
S. Kaya, T. Kahyaoglu, Influence of dehulling and roasting process on the thermodynamics of moisture adsorption in sesame seed. J. Food Eng. 76, 139–147 (2006). https://doi.org/10.1016/j.jfoodeng.2005.04.042
R. Moreira, F. Chenlo, M.D. Torres, N. Vallejo, Thermodynamic analysis of experimental sorption isotherms of loquat and quince fruits. J. Food Eng. 88, 514–521 (2008). https://doi.org/10.1016/j.jfoodeng.2008.03.011