Investigation of physico-chemical properties and evaluation of the biological potential of essential oil extracted from Artemisia pallens
Tóm tắt
Từ khóa
Tài liệu tham khảo
Jha V et al (2022) Chemical composition, bioactive potential, and thermal behaviour of cyperus scariosus essential oil. Chem Sci Int J. https://doi.org/10.9734/csji/2022/v31i230276
Jha V et al (2022) Evaluation of physiochemical properties, thermal behavior and phytopharmaceutical potential of citrus aurantium’s essential oil. Eur J Med Plants. https://doi.org/10.9734/ejmp/2022/v33i730479
Hazlehurst L, Hacker M (2009) Drug resistance, 1st edn. Elsevier Inc., Amsterdam. https://doi.org/10.1016/B978-0-12-369521-5.00015-4
Abraham EP (1963) The antibiotics. Compr Biochem 11(4):181–224. https://doi.org/10.1016/B978-1-4831-9711-1.50022-3
Deshpande R et al (2018) Comparative evaluation of antimicrobial properties of two different extracts of Artemisia Pallens (Davana) and 0.2% Chlorhexidine against acidogenic salivary microflora in mixed dentition age group. Res J Pharm Biol Chem Sci 9(1):545–549
Jaiswal YS, Williams LL (2017) A glimpse of Ayurveda—the forgotten history and principles of Indian traditional medicine. J Tradit Complement Med 7(1):50–53. https://doi.org/10.1016/j.jtcme.2016.02.002
Pandey AK, Singh P (2017) The genus artemisia: a 2012–2017 literature review on chemical composition antimicrobial, insecticidal and antioxidant activities of essential oils. Medicines 4(3):68. https://doi.org/10.3390/medicines4030068
Pujar PP, Sawaikar DD, Rojatkar SR, Nagasampagi BA (2000) A new germacranolide from Artemisia pallens. Fitoterapia 71(5):590–592. https://doi.org/10.1016/S0367-326X(00)00168-4
R. Shetty (2014) Influence of integrated nutrient management on dry matter production and flowering in davana (Artemisia Pallens Wall.). 4:760–762
Obistioiu D et al (2014) Chemical characterization by GC-MS and in vitro activity against Candida albicans of volatile fractions prepared from Artemisia dracunculus, Artemisia abrotanum, Artemisia absinthium and Artemisia vulgaris. Chem Cent J. https://doi.org/10.1186/1752-153X-8-6
Vengala N (2017) Antihypertensive activity of methanolic extract of Artemisia pallens wall in renal hypertensive diabetic rats. Res Rev BioSci 12(2):1–11
Swarna J et al (2015) Characterization of Talinum triangulare (Jacq.) Willd. germplasm using molecular descriptors. S Afr J Bot 97:59–68. https://doi.org/10.1016/j.sajb.2014.12.012
Mallavarapu GR, Kulkarni RN, Baskaran K, Rao L, Ramesh S (1999) Influence of plant growth stage on the essential oil content and composition in Davana (Artemisia pallens Wall.). J Agric Food Chem 47(1):254–258. https://doi.org/10.1021/jf980624c
Adams RP, Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy Mexican Cypresses View project Phylogeny and phylogeography of the genus Juniperus in Iran View project. [Online]. Available: https://www.researchgate.net/publication/283650275
Demo M, Oliva MDLM, López ML, Zunino MP, Zygadlo JA (2005) Antimicrobial activity of essential oils obtained from aromatic plants of Argentina. Pharm Biol 43(2):129–134. https://doi.org/10.1080/13880200590919438
Tolba H, Moghrani H, Benelmouffok A, Kellou D, Maachi R (2015) Essential oil of Algerian Eucalyptus citriodora: chemical composition, antifungal activity. J Mycol Med 25(4):e128–e133. https://doi.org/10.1016/j.mycmed.2015.10.009
Jha V et al (2022) Pratyusha Mane, Aishwarya Marath. exploration of probiotic potential of lactic acid bacteria isolated from different food sources. Am J BioSci 10(3):118–130. https://doi.org/10.11648/j.ajbio.20221003.14
Tsukatani T et al (2012) Comparison of the WST-8 colorimetric method and the CLSI broth microdilution method for susceptibility testing against drug-resistant bacteria. J Microbiol Methods 90(3):160–166. https://doi.org/10.1016/j.mimet.2012.05.001
Shin S, Kang C-A (2002) Antifungal activity of the essential oil of Agastache rugosa Kuntze and its synergism with ketoconazole. Lett Appl Microbiol 36:111–115. https://doi.org/10.1046/j.1472-765X.2003.01271.x
Patel RV, Kumari P, Rajani DP, Chikhalia KH (2011) Synthesis and studies of novel 2-(4-cyano-3-trifluoromethylphenyl amino)-4-(quinoline-4-yloxy)-6-(piperazinyl/piperidinyl)-s-triazines as potential antimicrobial, antimycobacterial and anticancer agents. Eur J Med Chem 46(9):4354–4365. https://doi.org/10.1016/j.ejmech.2011.07.006
Jha V et al (2022) Exploration of chemical composition and unveiling the phytopharmaceutical potentials of essential oil from fossilized resin of Pinus succinefera. Int Res J Pure Appl Chem. https://doi.org/10.9734/irjpac/2022/v23i330464
Rieckmann K et al (1978) Drug sensitivity of plasmodium falciparum. An in-vitro microtechnique. The Lancet 1(8054):22–23. https://doi.org/10.1016/S0140-6736(78)90365-3
Jha V et al (2022) Streptomyces peucetius M1 and Streptomyces lavendulae M3 soil isolates as a promising source for antimicrobials discovery. J Pharm Res Int. https://doi.org/10.9734/jpri/2022/v34i50b36438
Thusoo S et al (2014) Antioxidant activity of essential oil and extracts of Valeriana jatamansi roots. Biomed Res Int. https://doi.org/10.1155/2014/614187
Jha V et al (2022) ‘GC-MS Analysis and investigation of bioactive potential of essential oil from Citrus aurantium var. amara. Int J Pharm Chem 8(3):29–39. https://doi.org/10.11648/j.ijpc.20220803.11
Devare S et al (2013) Antioxidant potential of Artemisia pallens roots. Int J PharmTech Res 5(3):1360–1363
Wang W, Li N, Luo M, Zu Y, Efferth T (2012) Antibacterial activity and anticancer activity of Rosmarinus officinalis L. essential oil compared to that of its main components. Molecules 17(3):2704–2713. https://doi.org/10.3390/molecules17032704
Haney EF, Trimble MJ, Cheng JT, Vallé Q, Hancock REW (2018) Critical assessment of methods to quantify biofilm growth and evaluate antibiofilm activity of host defence peptides. Biomolecules. https://doi.org/10.3390/biom8020029
Cáceres M, Hidalgo W, Stashenko E, Torres R, Ortiz C (2020) Essential oils of aromatic plants with antibacterial, anti-biofilm and anti-quorum sensing activities against pathogenic bacteria. Antibiotics. https://doi.org/10.3390/antibiotics9040147
Sharma V, Singh B, Gupta RC, Dhaliwal HS, Srivastava DK (2014) In vitro antimicrobial activity and GCMS analysis of essential oil of Artemisia maritima (Linn.) from Lahaul & Spiti (Cold Desert) region of North-Indian higher altitude Himalayas. Journal of Medicinal Plants Studies Year, 2(2). [Online]. Available: www.plantsjournal.comwww.plantsjournal.com
Hui Pu Z et al (2010) Antibacterial activity of 9-octadecanoic acid-hexadecanoic acid-tetrahydrofuran-3,4-diyl ester from neem oil. Agric Sci China 9(8):1236–1240. https://doi.org/10.1016/S1671-2927(09)60212-1
Kiran GS, Priyadharsini S, Sajayan A, Ravindran A, Selvin J (2018) An antibiotic agent pyrrolo[1,2-: A] pyrazine-1,4-dione, hexahydro isolated from a marine bacteria Bacillus tequilensis MSI45 effectively controls multi-drug resistant Staphylococcus aureus. RSC Adv 8(32):17837–17846. https://doi.org/10.1039/c8ra00820e
Ben Bakrim W et al (2022) Phytochemical study and antioxidant activity of the most used medicinal and aromatic plants in Morocco. J Essent Oil Res 34(2):131–142. https://doi.org/10.1080/10412905.2022.2029777
Ser HL et al (2015) Presence of antioxidative agent, Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro- in newly isolated Streptomyces mangrovisoli sp. nov. Front Microbiol. https://doi.org/10.3389/fmicb.2015.00854
Calvo-Martín G et al (2022) Norbornene and related structures as scaffolds in the search for new cancer treatments. Pharmaceuticals. https://doi.org/10.3390/ph15121465
Cherniienko A et al (2022) Antimicrobial and Odour Qualities of Alkylpyrazines Occurring in Chocolate and Cocoa Products. Appl Sci 12(22):11361. https://doi.org/10.3390/app122211361
Cheng XC, Liu XY, Xu WF, Guo XL, Ou Y (2007) Design, synthesis, and biological activities of novel Ligustrazine derivatives. Bioorg Med Chem 15(10):3315–3320. https://doi.org/10.1016/j.bmc.2007.03.033
Bail S et al (2008) GC-MS-analysis, antimicrobial activities and olfactory evaluation of essential davana (Artemisia pallens Wall. ex DC) oil from India. Nat Prod Commun 3(7):1057–1062. https://doi.org/10.1177/1934578X08003007
Diao WR, Hu QP, Zhang H, Xu JG (2014) Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.). Food Control 35(1):109–116. https://doi.org/10.1016/j.foodcont.2013.06.056
Abd-Elgawad AM, Elshamy AI, Al-Rowaily SL, El-Amier YA (2019) Habitat affects the chemical profile, allelopathy, and antioxidant properties of essential oils and phenolic enriched extracts of the invasive plant heliotropium curassavicum. Plants. https://doi.org/10.3390/plants8110482
Aati HY et al (2020) Chemical composition and antimicrobial activity of the essential oils of Artemisia absinthium, Artemisia scoparia, and Artemisia sieberi grown in Saudi Arabia. Arab J Chem 13(11):8209–8217. https://doi.org/10.1016/j.arabjc.2020.09.055
Gonçalves MJ et al (2012) Composition and biological activity of the essential oil from Thapsia minor, a new source of geranyl acetate. Ind Crops Prod 35(1):166–171. https://doi.org/10.1016/j.indcrop.2011.06.030
Bilia AR, Santomauro F, Sacco C, Bergonzi MC, Donato R (2014) Essential oil of artemisia annua L.: an extraordinary component with numerous antimicrobial properties. Evid based Complement Altern Med. https://doi.org/10.1155/2014/159819
Nigam M et al (2019) Bioactive compounds and health benefits of Artemisia species. Nat Prod Commun. https://doi.org/10.1177/1934578X19850354
Bisht D, Kumar D, Kumar D, Dua K, Chellappan DK (2021) Phytochemistry and pharmacological activity of the genus artemisia. Arch Pharmacal Res 44(5):439–474. https://doi.org/10.1007/s12272-021-01328-4
Younessi-Hamzekhanlu M et al (2020) Evaluation of essential oil from different artemisia fragrans willd. Populations: chemical composition, antioxidant, and antibacterial activity. J Essent Oil Bear Plants 23(6):1218–1236. https://doi.org/10.1080/0972060X.2020.1854129
Rosito M, Testi C, Parisi G, Cortese B, Baiocco P, di Angelantonio S (2020) Exploring the use of dimethyl fumarate as microglia modulator for neurodegenerative diseases treatment. Antioxidants 9(8):1–22. https://doi.org/10.3390/antiox9080700
Ruikar A et al (2011) Studies on aerial parts of Artemisia pallens wall for phenol, flavonoid and evaluation of antioxidant activity. J Pharm Bioallied Sci 3(2):302–305. https://doi.org/10.4103/0975-7406.80768
Zhang G, Qi F, Yan Q, Zheng Z, Liu J, Chen Y (2018) Geraniol and geranyl acetate induce potent anticancer effects in colon cancer Colo-205 cells by inducing apoptosis, DNA damage and cell cycle arrest. JBUON 23(2):346–352
Chen K et al (2021) Dimethyl fumarate induces metabolic crisie to suppress pancreatic carcinoma. Front Pharmacol. https://doi.org/10.3389/fphar.2021.617714
Tian S, Cai J, Zhong Y (2020) Naturally occurring davanone exhibits anticancer potential against ovarian cancer cells by inducing programmed cell death, suppression of cell migration and invasion and modulation of PI3K/AKT/MAPK signaling pathway. JBUON 25(5):2301–2307
Rashid S, Rather MA, Shah WA, Bhat BA (2013) Chemical composition, antimicrobial, cytotoxic and antioxidant activities of the essential oil of Artemisia indica Willd. Food Chem 138(1):693–700. https://doi.org/10.1016/j.foodchem.2012.10.102
Sahu N et al (2018) Extraction, fractionation and re-fractionation of Artemisia nilagirica for anticancer activity and HPLC-ESI-QTOF-MS/MS determination. J Ethnopharmacol 213:72–80. https://doi.org/10.1016/j.jep.2017.10.029
Elgamal AM, Ahmed RF, Abd-Elgawad AM, el Gendy AENG, Elshamy AI, Nassar MI (2021) Chemical profiles, anticancer, and anti-aging activities of essential oils of pluchea dioscoridis (L.) dc. and erigeron bonariensis l. Plants. https://doi.org/10.3390/plants10040667
Famuyide IM, Aro AO, Fasina FO, Eloff JN, McGaw LJ (2019) Antibacterial and antibiofilm activity of acetone leaf extracts of nine under-investigated south African Eugenia and Syzygium (Myrtaceae) species and their selectivity indices. BMC Complement Altern Med. https://doi.org/10.1186/s12906-019-2547-z