Investigating the possibility of producing animal feed from sugarcane bagasse using oyster mushrooms: a case in rural entrepreneurship
Tóm tắt
Pleurotus florida is an edible mushroom that has commercial potential in the food industry. The objective of this study was to investigate the possibility of producing animal feed from sugarcane bagasse using P. florida. To this aim, sugarcane bagasse was processed with P. florida. The experiment was designed in a completely randomized design with four treatments: processed sugarcane bagasse, raw sugarcane bagasse, wheat straw, and barley straw. This research was carried out under two in vitro and in vivo conditions. In case of in vitro condition, it can be concluded that the amount of dry matter, neutral detergent fiber (P < 0.01), and acidic detergent fiber (P < 0.05) significantly decreased in processed sugarcane bagasse, and the amount of crude protein (P < 0.05), organic matter, and crude ash (P < 0.01) significantly increased. The result of in vivo condition showed that as a result of biological processing of sugarcane bagasse with P. florida, the indices such as digestibility, voluntary feed intake, and relative palatability index increased. The results of this study suggests that treated bagasse could be used as an alternative roughage source for ruminant feeding.
Tài liệu tham khảo
Abdullah, N., Ejaz, N., Abdullah, M., Nisa, A. U., & Firdous, S. (2006). Lignocellulosic degradation in solid-state fermentation of sugar cane bagasse by Termitomyces sp. Micología Aplicada International, 18(2), 15–19.
AOAC (Association of Official Analytical Chemists). (1998). Official methods of analysis of theAOAC International (16th ed.). Gaithersburg: AOAC International.
Ardon, O., Kerem, Z., & Hadar, Y. (1996). Enhancement of laccase activity in liquid cultures of the ligninolytic fungus Pleurotus ostreatus by cotton stalk extract. Journal of Biotechnology, 51(3), 201–207.
Bakshi, M. P. S., Gupta, V. K., & Langar, P. N. (1985). Acceptability and nutritive evaluation of Pleurotus harvested spent wheat straw in buffaloes. Agricultural Wastes, 13(1), 51–57.
Balgees, A., Elmnan, A., Fadel Elseed, A. M. A., & Salih, A. M. (2007). Effect of ammonia and urea treatments on the chemical composition and rumen degradability of bagasse. J. Appl. Sci. Res, 3(11), 1359–1362.
Carvalho, M. L., Sousa Jr, R., Rodriguez-Zuniga, U. F., Suarez, C. A. G., Rodrigues, D. S., Giordano, R. C., & Giordano, R. L. C. (2013). Kinetic study of the enzymatic hydrolysis of sugarcane bagasse. Brazilian Journal of Chemical Engineering, 30(3), 437–447.
Chahal, D. S., & Khan, S. M. (1991). Production of mycelial biomass of oyster mushrooms on rice straw. In Mushroom Science XIII. Volume 2. Proceedings of the 13th international congress on the science and cultivation of edible fungi (pp. 709–716). Dublin: Irish Republic.
Chaudhry, A. S. (1998). Nutrient composition, digestion and rumen fermentation in sheep of wheat straw treated with calcium oxide, sodium hydroxide and alkaline hydrogen peroxide. Animal feed science and technology, 74(4), 315–328.
Chaudhry, A. S., & Miller, E. L. (1996). The effect of sodium hydroxide and alkaline hydrogen peroxide on chemical composition of wheat straw and voluntary intake, growth and digesta kinetics in store lambs. Animal feed science and technology, 60(1-2), 69–86.
da Costa, D. A., de Souza, C. L., Saliba, E. D. O. S., & Carneiro, J. D. (2015). By-products of sugar cane industry in ruminant nutrition. International Journal Advance Agriculture Research, 3, 1–9.
Dhanda, S., Garcha, H. S., Kakkar, V. K., & Makkar, G. S. (1996). Improvement in feed value of paddy straw by Pleurotus cultivation. Mushroom Research, 5, 1.
Fazaeli, H. (2008). Digestibility and voluntary intake of fungal-treated wheat straw in sheep and cow. JWSS-Isfahan University of Technology, 12(43), 523–531.
Fazaeli, H., Mahmodzadeh, H., Azizi, A., Jelan, Z. A., Liang, J. B., Rouzbehan, Y., & Osman, A. (2004). Nutritive value of wheat straw treated with Pleurotus fungi. Asian-australasian journal of animal sciences, 17(12), 1681–1688.
Gunun, N., Wanapat, M., Gunun, P., Cherdthong, A., Khejornsart, P., & Kang, S. (2016). Effect of treating sugarcane bagasse with urea and calcium hydroxide on feed intake, digestibility, and rumen fermentation in beef cattle. Tropical animal health and production, 48(6), 1123–1128.
Kaitho, R. J., Umunna, N. N., Nsahlai, I. V., Tamminga, S., Van Bruchem, J., Hanson, J., & Van De Wouw, M. (1996). Palatability of multipurpose tree species: effect of species and length of study on intake and relative palatability by sheep. Agroforestry systems, 33(3), 249–261.
Liu, J. X., Orskov, E. R., & Chen, X. B. (1999). Optimization of steam treatment as a method for upgrading rice straw as feeds. Animal feed science and technology, 76(3-4), 345–357.
Menke, K., & Steingass, H. (1988). Estimation of the energetic feed value from chemical composition and in vitro gas production using rumen fluid. Animal Research and Development, 28, 7–55.
Moyson, E., & Verachtert, H. (1991). Growth of higher fungi on wheat straw and their impact on the digestibility of the substrate. Applied Microbiology and Biotechnology, 36(3), 421–424.
Okano, K., Iida, Y., Samsuri, M., Prasetya, B., Usagawa, T., & Watanabe, T. (2006). Comparison of in vitro digestibility and chemical composition among sugarcane bagasses treated by four white‐rot fungi. Animal Science Journal, 77(3), 308–313.
Pandey, A., & Soccol, C. R. (1998). Bioconversion of biomass: a case study of ligno-cellulosics bioconversions in solid state fermentation. Brazilian Archives of Biology and Technology, 41(4), 379–390.
Pandey, A., Soccol, C. R., Nigam, P., & Soccol, V. T. (2000). Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresource Technology, 74(1), 69–80.
Steel, R. G. D., & Torrie, J. H. (1980). Duncan’s new multiple range test. Principles and procedures of statistics, 187–188.
Theodorou, M. K., Williams, B. A., Dhanoa, M. S., McAllan, A. B., & France, J. (1994). A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal feed science and technology, 48(3-4), 185–197.
Van Soest, P. V., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of dairy science, 74(10), 3583–3597.
Vogtmann, H., Pfirter, H. P., & Prabucki, A. L. (1975). A new method of determining metabolisability of energy and digestibility of fatty acids in broiler diets.
Wanapat, M., & Pimpa, O. (1999). Effect of ruminal NH3-N levels on ruminal fermentation, purine derivatives, digestibility and rice straw intake in swamp buffaloes. Asian-Australasian Journal of Animal Sciences, 12(6), 904–907.
Wanapat, M., Polyorach, S., Boonnop, K., Mapato, C., & Cherdthong, A. (2009). Effects of treating rice straw with urea or urea and calcium hydroxide upon intake, digestibility, rumen fermentation and milk yield of dairy cows. Livestock Science, 125(2-3), 238–243.
Yu, Q., Zhuang, X., Lv, S., He, M., Zhang, Y., Yuan, Z., et al. (2013). Liquid hot water pretreatment of sugarcane bagasse and its comparison with chemical pretreatment methods for the sugar recovery and structural changes. Bioresource technology, 129, 592–598.
Zhang, C. K., Gong, F., & Li, D. S. (1995). A note on the utilisation of spent mushroom composts in animal feeds. Bioresource Technology, 52(1), 89–91.