Investigating the impact of customer stochasticity on firm price discrimination strategies using a new Bayesian mixture scale heterogeneity model

Springer Science and Business Media LLC - Tập 27 - Trang 537-552 - 2015
Joseph Pancras1, Xia Wang2, Dipak K. Dey3
1Department of Marketing, University of Connecticut, Storrs, USA
2Department of Mathematical Sciences, University of Cincinnati, Cincinnati, USA
3[University of Connecticut, Storrs, USA]

Tóm tắt

In this paper, we study the impact of customer stochasticity on firm price discrimination strategies. We develop a new model termed the Bayesian Mixture Scale Heterogeneity (BMSH) model that incorporates both parameter heterogeneity and customer stochasticity using a mixture model approach, and demonstrate model identification using extensive simulations. We estimate the model on yogurt scanner data and find that compared to the benchmark mixed logit and multinomial probit models, our model shows that markets are less price elastic, and that a majority of customers exhibit stochasticity in purchases; our model also obtains better prediction and more profitable targeting strategies.

Tài liệu tham khảo

Ben-Akiva, M., & Lerman, S. (1985). Discrete choice analysis: theory and application to travel demand. Cambridge: MIT Press. Chintagunta, P. K. (1992). Heterogeneity in nested logit models: an estimation approach and empirical results. International Journal of Research in Marketing, 9(2), 161–175. Feit EM (2009) Extending the generalized multinomial logit model: error scale and decision-maker characteristics. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1566068. Accessed August 23, 2012. Fiebig, D. G., Keane, M. P., Louviere, J., & Wasi, N. (2010). The generalized multinomial logit model: accounting for scale and coefficient heterogeneity. Marketing Science, 29(3), 393–421. Geweke, J., & Keane, M. (2006). Smoothly mixing regressions. Journal of Econometrics, 138(1), 252–290. Hartmann, W. R. (2010). Demand estimation with social interactions and the implications for targeted marketing. Marketing Science, 29(4), 585–601. Hutchinson, J. W., Zauberman, G., & Meyer, R. (2010). Commentary—on the interpretation of temporal inflation parameters in stochastic models of judgment and choice. Marketing Science, 29(1), 23–31. Jain, D. C., Vilcassim, N. J., & Chintagunta, P. K. (1994). A random-coefficients logit brand-choice model applied to panel data. Journal of Business & Economic Statistics, 12(3), 317–328. Kasahara, H., & Shimotsu, K. (2009). Nonparametric identification of finite mixture models of dynamic discrete choices. Econometrica, 77(1), 135–175. Maddala, G. (1983). Limited-dependent and qualitative variables in econometrics. Cambridge: Cambridge University Press. Pancras, J., & Sudhir, K. (2007). Optimal marketing strategies for a customer data intermediary. Journal of Marketing Research, 44(4), 560–578. Quandt, R. E. (1972). A new approach to estimating switching regressions. Journal of the American Statistical Association, 67(338), 306–310. Rossi, P. E., McCulloch, R. E., & Allenby, G. M. (1996). The value of purchase history data in target marketing. Marketing Science, 15(4), 321–340. Salisbury, L. C., & Feinberg, F. M. (2010a). Alleviating the constant stochastic variance assumption in decision research: theory, measurement, and experimental test. Marketing Science, 29(1), 1–17. Salisbury, L. C., & Feinberg, F. M. (2010b). Rejoinder-temporal stochastic inflation in choice-based research. Marketing Science, 29(1), 32–39. Singh, V. P., Hansen, K. T., & Gupta, S. (2005). Modeling preferences for common attributes in multicategory brand choice. Journal of Marketing Research, 42(2), 195–209. Tirole, J. (1988). The theory of industrial organization. Cambridge: MIT Press. Titterington, D. M., Smith, A. F., & Makov, U. E. (1985). Statistical analysis of finite mixture distributions (Vol. 7). New York: Wiley. Zhang, J., & Wedel, M. (2009). The effectiveness of customized promotions in online and offline stores. Journal of Marketing Research, 46(2), 190–206. Zhang, J. Z., Netzer, O., & Ansari, A. (2014). Dynamic targeted pricing in B2B relationships. Marketing Science, 33(3), 317–337.