Investigating the ecotoxicity of construction product eluates as multicomponent mixtures
Tóm tắt
The release of hazardous compounds from construction products can harm human health and the environment. To improve the sustainability of construction materials, the leaching of substances from construction products and their potential environmental impact should be assessed. Twenty-seven construction products from different product groups were examined with a combination of standardized leaching tests (dynamic surface leaching test and percolation test) and biotests (algae, daphnia, fish egg, luminescent bacteria, umu and Ames fluctuation tests). To identify the released substances, extensive qualitative and quantitative chemical analyses were performed, including gas chromatographic and liquid chromatographic screening techniques. Many of the tested eluates caused significant ecotoxic effects. Particularly high ecotoxicities were observed for grouts (lowest ineffective dilution (LID) up to 16384) and cork granules (LID up to 24578). The results of ecotoxicity tests allow the prioritization of the eluates that should be subjected to detailed chemical analyses. Organic screening by different methods and ranking the identified substances based on recorded hazard classification is a suitable approach to identify the relevant toxic substances. Determining the ecotoxicity of eluates from construction products records the summary effect of all leachable substances. This instrument is especially useful for construction products of complex and largely unknown composition. The ecotoxicological and the chemical–analytical approach complement each other in an ideal way to characterize the potential hazard of eluates from construction products and to identify the environmentally hazardous components in these eluates. Our results confirm that the proposed harmonized methods for testing eluate toxicity are an adequate and applicable procedure to move toward a more sustainable way of building and to reduce toxic effects of construction products in their use phase in the environment..
Tài liệu tham khảo
Rey-Alvarez B, Sanchez-Montanes B, García-Martínez A (2022) Building material toxicity and life cycle assessment: a systematic critical review. J Clean Prod. https://doi.org/10.1016/j.jclepro.2022.130838
Kobeticova K, Cerný R (2017) Ecotoxicology of building materials: a critical review of recent studies. J Clean Prod 165:500–508. https://doi.org/10.1016/j.jclepro.2017.07.161
Rodrigues P, Silvestre J, Flores-Colen I, Viegas C, de Brito J, Kurad R, Demertzi M (2017) Methodology for the assessment of the ecotoxicological potential of construction materials. Materials 10(6):649. https://doi.org/10.3390/ma10060649
Burkhardt M, Zuleeg S, Vonbank R, Bester K, Carmeliet J, Boller M, Wangler T (2012) Leaching of biocides from facades under natural weather conditions. Environ Sci Technol 46:5497–5503. https://doi.org/10.1021/es2040009
Bollmann UE, Minelgaite G, Schlüsener M, Ternes T, Vollertsen J, Bester K (2016) Leaching of terbutryn and its photodegradation products from artificial walls under natural weather conditions. Environ Sci Technol 50:4289–4295. https://doi.org/10.1021/acs.est.5b05825
Vermeirssen ELM, Campiche S, Dietschweiler C, Werner I, Burkhardt M (2018) Ecotoxicological assessment of immersion samples from façade render containing free or encapsulated biocides. Environ Toxicol Chem 37(8):2246–2256. https://doi.org/10.1002/etc.4176
Burkhardt M, Rohr M, Heisterkamp I (2020) Gartiser S (2020): Niederschlagswasser von Kunststoffdachbahnen—Auslaugung von Stoffen und deren Ökotoxizität für aquatische organismen. Korresp Wasserwirtsch 13:418–424
Jungnickel CS, Stock F, Brandsch T, Ranke J (2008) Risk assessment of biocides in roof paint. Environ Sci Pollut Res 15:258–265. https://doi.org/10.1065/espr2007.12.465
Bucheli TD, Muller SR, Voegelin A, Schwarzenbach RP (1998) Bituminous roof sealing membranes as major sources of the herbicide (R, S)-mecoprop in roof runoff waters: Potential contamination of groundwater and surface waters. Environ Sci Technol 32:3465–3471. https://doi.org/10.1021/es980318f
Vollpracht A, Brameshuber W (2013) Environmental compatibility of bitumen waterproofing. Mater Struct 46:1257–1264. https://doi.org/10.1617/s11527-012-9969-0
Hartwich P, Vollpracht A (2017) Influence of leachate composition on the leaching behaviour of concrete. Cem Concr Res 100:423–434. https://doi.org/10.1016/j.cemconres.2017.07.002
Weiler L, Vollpracht A (2020) Leaching of carbon reinforced concrete—Part 1: experimental investigations. Materials 13:4405. https://doi.org/10.3390/ma13194405
Mocova KA, Sackey L, Renkerova P (2019) Environmental impact of concrete and concrete-based construction waste leachates. IOP Conf Ser Earth Environ Sci. https://doi.org/10.1088/1755-1315/290/1/012023
Märkl V, Pflugmacher S, Stephan DA (2017) Leaching of PCE-based superplasticiser from microfine cement: a chemical and ecotoxicological point of view. Water Air Soil Pollut. https://doi.org/10.1007/s11270-017-3373-x
Regulation (EU) No. 305/2011 of the European Parliament and of the Council of 9 March 2011 laying down harmonized conditions for the marketing of construction products and repealing Council Directive 89/106/ EEC. Official journal of the European union, 4.4.2011. https://eur-lex.europa.eu/oj/direct-access.html Assessed 13 Sept 2022
Website of the EU Commission environment https://environment.ec.europa.eu/strategy/zero-pollution-action-plan_en Assessed 13 Sept 2022
Website of the EU Commission environment https://environment.ec.europa.eu/strategy/chemicals-strategy_en Assessed 13 Sept 2022
prEN 16637–1:2021: Construction products—assessment of release of dangerous substances—part 1: Guidance for the determination of leaching tests and additional testing steps
prEN 16637–2:2021: Construction products—assessment of release of dangerous substances—part 2: Horizontal dynamic surface leaching test
prEN 16637–3:2021: Construction products—assessment of release of dangerous substances—part 3: Horizontal up-flow percolation test
Hjelmar O, Hykš J, Wahlström M, Laine-Ylijoki, J, van Zomeren A, Comans R, Kalbe U, Schoknecht U, Krüger O, Grathwohl P, et al. (2013): Robustness Validation of TS-2 and TS-3 Developed by CEN/TC351/WG1 to assess release from products to soil, surface water and ground water, report https://www.nen.nl/media/Overig/WG_1_Robustness_Validation_Report_-_TS-2_and_TS-3_-_Leaching_methods.pdf
Gartiser S, Heisterkamp I, Schoknecht U, Burkhardt M, Ratte M, Ilvonen I, Brauer F, Brückmann J, Dabrunz A, Egeler P, Eisl A-M, Feiler U, Fritz I, König S, Lebertz H, Pandard P, Pötschke G, Scheerbaum D, Schreiber F, Soldán P, Weiß R, Weltens R (2017) Results from a round robin test for the ecotoxicological evaluation of construction products using two leaching tests and an aquatic test battery. Chemosphere 175:138–146. https://doi.org/10.1016/j.chemosphere.2017.01.146
Heisterkamp I, Ratte M, Schoknecht U, Gartiser S, Kalbe U, Ilvonen O (2021) Ecotoxicological evaluation of construction products: inter-laboratory test with DSLT and percolation test eluates in an aquatic biotest battery. Environ Sci Eur 33(75):1–14. https://doi.org/10.1186/s12302-021-00514-x
Heisterkamp I, Gartiser S, Kretzschmar M, Schoknecht U, Kalbe U, Happel O, Ratte M: Methoden und Kriterien zur Bewertung der Ökotoxizität von Produkten. UBA-Texte 151/2022
CEN/TR 17105 (2017) Construction products—assessment of release of dangerous substances—guidance on the use of ecotoxicity tests applied to construction products
CEN/TS 17459 (2022) Construction products: assessment of release of dangerous substances—determination of ecotoxicity of construction product eluates
Brack W, Aissa SA, Backhaus T, Dulio V, Escher BI, Faust M, Hilscherova K, Hollender J, Hollert H, Müller C, Munthe J, Posthuma L, Seiler T-B, Slobodnik J, Teodorovic I, Tindall AJ, de Aragão UG, Zhang X, Altenburger R (2019) Effect-based methods are key The European Collaborative Project SOLUTIONS recommends integrating effect-based methods for diagnosis and monitoring of water quality. Environ Sci Eur. https://doi.org/10.1186/s12302-019-0192-2
Bandow N, Jürgens F, Schoknecht U (2018): Beregnete Bauteile und Bauprodukte: Entwicklung von Vergabekriterien für den Blauen Engel mit Hilfe von Auslaugtests. UBA-Texte 67/2018, Umweltbundesamt, Dessau-Roßlau
Bertling J, Dresen B, Bertling R, Aryan V, Weber T (2021) Kunstrasenplätze—Systemanalyse unter Berücksichtigung von Mikroplastik- und Treibhausgasemissionen, Recycling, Standorten und Standards, Kosten sowie Spielermeinungen. Studie Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT publica.fraunhofer.de. https://doi.org/10.24406/umsicht-n-640390
ISO 8692 (2012–02) Water quality—fresh water algal growth inhibition test with unicellular green algae
ISO 6341 (2012–10) Water quality—determination of the inhibition of the mobility of daphnia magna straus (cladocera, crustacea)—acute toxicity test
ISO 15088 (2007–10) Water quality—determination of the acute toxicity of waste water to zebrafish eggs (Danio rerio)
ISO 11348 (2007–12) Water quality—determination of the inhibitory effect of water samples on the light emission of vibrio fischeri (luminescent bacteria test)—part 1: method using freshly prepared bacteria, part 2: method using liquid-dried bacteria, part 3: method using freeze-dried bacteria
ISO 13829 (2000–03) Water quality—determination of the genotoxicity of water and waste water using the umu-test
ISO 11350 (2012–05): Water quality—determination of the genotoxicity of waste and waste water—salmonella/microsome fluctuation test (Ames fluctuation test)
Schoknecht U, Kalbe U, Heisterkamp I, Kretzschmar M, Gartiser S, Happel O, Ilvonen I (2022) Release of substances from joint grouts based on various binder types and their ecotoxic effects. Environ Sci Eur 34:111. https://doi.org/10.1186/s12302-022-00686-0
DIN EN 1484 (2019–04) Wasseranalytik—Anleitungen zur Bestimmung des gesamten organischen Kohlenstoffs (TOC) und des gelösten organischen Kohlenstoffs (DOC), Water analysis—guidelines for the determination of total organic carbon (TOC) and dissolved organic carbon (DOC)
DIN EN ISO 10523 (2012–04): Wasserbeschaffenheit—Bestimmung des pH-Werts, Water quality—determination of pH
DIN EN 27888 (1993–11): Wasserbeschaffenheit; Bestimmung der elektrischen Leitfähigkeit, Water quality; determination of electrical conductivity
DIN EN ISO 7027 (2016-11) Wasserbeschaffenheit—Bestimmung der Trübung, Water quality–determination of turbidity
DIN EN ISO 10304–1 (2009-07): Wasserbeschaffenheit—Bestimmung von gelösten Anionen mittels Flüssigkeits-Ionenchromatographie—Teil 1: Bestimmung von Bromid, Chlorid, Fluorid, Nitrat, Nitrit, Phosphat und Sulfat, Water quality—determination of dissolved anions by liquid chromatography of ions—part 1: Determination of bromide, chloride, fluoride, nitrate, nitrite, phosphate, and sulfate
DIN EN ISO 11885 (2009–09): Wasserbeschaffenheit—Bestimmung von ausgewählten Elementen durch induktiv gekoppelte Plasma-Atom-Emissionsspektrometrie (ICP-OES), Water quality—determination of selected elements by inductively coupled plasma optical emission spectrometry
LAWA (2016): Ableitung von Geringfügigkeitsschwellenwerten für das Grundwasser—aktualisierte und überarbeitete Fassung 2016, Länderarbeitsgemeinschaft Wasser (LAWA) https://www.lawa.de/documents/geringfuegigkeits_bericht_seite_001-028_1552302313.pdf
DIN EN ISO 17294-2 (2022-04): Wasserbeschaffenheit—Anwendung der induktiv gekoppelten Plasma-Massenspektrometrie (ICP-MS)—Teil 2: Bestimmung von ausgewählten Elementen einschließlich Uran-Isotope, Water quality—Application of inductively coupled plasma mass spectrometry [ICP-MS]—Part 2: Detection of selected elements including uranium isotopes
DIN EN 15768 (2015–05): Einfluss von Materialien auf Wasser für den menschlichen Gebrauch—Identifizierung mittels GC-MS von durch Wasser auslaugbaren organischen Substanzen, Influence of materials in water intended for human consumption—GC-MS identification of water leachable organic substances
ECHA Website on registered substances, https://echa.europe/de/information-on-chemicals/registered-substances Assessed 13 Sept 2022
Planas D, Sarhan F, Dube L, Godmaire H, Cadieux C (1981) Ecological significance of phenolic compounds of Myriophyllum spicatum. SIL Proc. https://doi.org/10.1080/03680770.1980.11897219
Coors A, Frische T (2011) Predicting the aquatic toxicity of commercial pesticides mixtures. Environ Sci Eur 23:22. https://doi.org/10.1186/2190-4715-23-22
Gartiser S, Heisterkamp I, Schoknecht U, Burkhardt M, Ratte. Empfehlungen für eine Testbatterie zur ökotoxikologischen Bewertung der Umweltverträglichkeit von Bauprodukten. UBA-Texte 74/2016
Gartiser S, Heisterkamp I, Schoknecht U, Burkhardt M, Ratte M, Ilvonen O (2017) Recommendation for a test battery for the ecotoxicological evaluation of the environmental safety of construction products. Chemosphere 171:580–587
Heisterkamp I, Gartiser S, Kalbe U, Bandow N, Gloßmann A (2019) Assessment of leachates from reactive fire-retardant coatings by chemical analysis and ecotoxicity testing. Chemosphere 226:85–93
Santos SAO, Villaverde JJ, Sousa AF, Coelho JFJ, Neto CP, Silvestre AJD (2013) Phenolic composition and antioxidant activity of industrial cork by-products. Ind Crops Prod 47:262–269
Aroso IM, Araújo AR, Pires RA, Reis RL (2017) Cork—current technological developments and future perspectives for this natural, renewable, and sustainable material. Sust Chem Eng 5:11130–11146
DIBt (2009): DIBt Grundsätze zur Bewertung der Auswirkungen von Bauprodukten auf Boden und Grundwasser. Deutsches Institut für Bautechnik, Berlin 2011 (Teil I Mai 2009, Teil II September 2011, Teil II Mai 2009)
DE-UZ-216 (2021–01): Concrete products with recycled aggregates for outdoor floor coverings https://www.blauer-engel.de/en/productworld/concrete-products-containing-recycled-aggregates-for-outdoor-flooring-new
DE-UZ 224 (2022–07): Roof and Sealing Sheets https://www.blauer-engel.de/en/productworld/roof-and-sealing-sheets
DE-UZ 221 (2022–01) Underwater coatings and other anti-fouling systems. https://www.blauer-engel.de/en/productworld/underwater-coatings-and-other-anti-fouling-systems
European Assessment Document 030351–00–0402 (2019): Systems of mechanically fastened flexible roof waterproofing sheets https://www.eota.eu/download?file=/2017/17-03-0351/ead%20for%20ojeu/ead%20030351-00-0402_ojeu2019.pdf
European assessment document 040427-00-0404 (2018): Kits for external thermal insulation composite system (ETICS) with mortar as thermal insulation product and renderings or discontinuous claddings as exterior skin https://www.eota.eu/download?file=/2015/15-04-0427/for%20ojeu/ead%20040427-00-0404_ojeu2019.pdf
De Buyck P-J, Matviichuk O, Dumoulin A, Rousseau DPL, Stijn WH, Van Hulle SWH (2021) Roof runoff contamination: establishing material-pollutant relationships and material benchmarking based on laboratory leaching tests. Chemosphere 283:31112. https://doi.org/10.1016/j.chemosphere.2021.131112
Vermeirssen ELM, Dietschweiler C, Werner I, Burkhardt M (2017) Corrosion protection products as a source of bisphenol a and toxicity to the aquatic environment. Water Res 123:586–593. https://doi.org/10.1016/j.watres.2017.07.006
Bell AM, Baier R, Kocher B, Reifferscheid G, Buchinger S, Ternes T (2020) Ecotoxicological characterization of emissions from steel coatings in contact with water. Water Res. https://doi.org/10.1016/j.watres.2020.115525
Bell AM, Keltsch N, Schweyen P, Reifferscheid G, Ternes T, Buchinger S (2021) UV aged epoxy coatings – Ecotoxicological effects and released compounds. Water Res. https://doi.org/10.1016/j.wroa.2021.100105
Brack W, Ait-Aissa S, Burgess RM, Busch W, Creusot N, Di Paolo C, Escher BI, Hewitt LM, Hilscherova K, Hollender J, Hollert H, Jonker W, Kool J, Lamoree M, Muschket M, Neumann S, Rostkow P, Ruttkies C, Schollee J, Schymanski EL, Schulze T, Seiler T-B, Tindall AJ, De Aragão UG, Vrana B, Krauss M (2016) Effect-directed analysis supporting monitoring of aquatic environments—An in-depth overview. Sci Tot Env. https://doi.org/10.1016/j.scitotenv.2015.11.102
Zimmermann L, Bartosova Z, Braun K, Oehlmann J, Völker C, Wagner M (2021) Plastic products leach chemicals that induce in vitro toxicity under realistic use conditions. Environ Sci Technol 55:11814–11823. https://doi.org/10.1021/acs.est.1c01103
More SJ, Hardy A, Bampidis V, Benford D, Hougaard Bennekou S, Bragard C, Boesten J, Halldorsson TI, Hernández-Jerez AF, Jeger MJ, Knutsen HK, Koutsoumanis KP, Naegeli H, Noteborn H, Ockleford C, Ricci A, Rychen G, Schlatter JR, Silano V, Nielsen SS, Schrenk D, Solecki R, Turck D, Younes M, Benfenati E, Castle L, Cedergreen N, Laskowski R, Leblanc JC, Kortenkamp A, Ragas A, Posthuma L, Svendsen C, Testai E, Dujardin B, Kass GEN, Manini P, Zare Jeddi M, Dorne JLCM, Hogstrand C, Committee ES (2019) Guidance on harmonised methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals. EFSA J. https://doi.org/10.2903/j.efsa.2019.5634