Investigating tail-risk dependence in the cryptocurrency markets: A LASSO quantile regression approach
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adams, 2014, Spillover effects among financial institutions: A state-dependent sensitivity value-at-risk approach, J. Financ. Quant. Anal., 49, 575, 10.1017/S0022109014000325
Adcock, 1994, A simple algorithm to incorporate transactions costs in quadratic optimisation, European J. Oper. Res., 79, 85, 10.1016/0377-2217(94)90397-2
Barro, 2006, Rare disasters and asset markets in the twentieth century, Q. J. Econ., 121, 823, 10.1162/qjec.121.3.823
Belloni, 2011, l1-Penalized quantile regression in high-dimensional sparse models, Ann. Statist., 39, 82, 10.1214/10-AOS827
Borri, 2019, Conditional tail-risk in cryptocurrency markets, J. Empir. Financ., 50, 1, 10.1016/j.jempfin.2018.11.002
Borri, 2018
Bouri, 2018, Co-explosivity in the cryptocurrency market, Finance Res. Lett.
Brandtner, 2013, Conditional Value-at-Risk, spectral risk measures and (non-) diversification in portfolio selection problems – A comparison with mean-variance analysis, J. Bank. Financ., 37, 5526, 10.1016/j.jbankfin.2013.02.009
Chaim, 2018, Volatility and return jumps in bitcoin, Econom. Lett., 173, 158, 10.1016/j.econlet.2018.10.011
Cheah, 2015, Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin, Econom. Lett., 130, 32, 10.1016/j.econlet.2015.02.029
Corbet, 2018, Exploring the dynamic relationships between cryptocurrencies and other financial assets, Econom. Lett., 165, 28, 10.1016/j.econlet.2018.01.004
Diebold, 2009, Measuring financial asset return and volatility spillovers, with application to global equity markets, Econ. J., 119, 158, 10.1111/j.1468-0297.2008.02208.x
Diebold, 2012, Better to give than to receive: Predictive directional measurement of volatility spillovers, Int. J. Forecast., 28, 57, 10.1016/j.ijforecast.2011.02.006
Diebold, 2014, On the network topology of variance decompositions: Measuring the connectedness of financial firms, J. Econometrics, 182, 119, 10.1016/j.jeconom.2014.04.012
Gkillas, 2018
Gkillas, 2018, An application of extreme value theory to cryptocurrencies, Econom. Lett., 164, 109, 10.1016/j.econlet.2018.01.020
Hautsch, 2015, Financial network systemic risk contributions, Rev. Finance, 19, 685, 10.1093/rof/rfu010
Högholm, 2011, Distributional asymmetry of loadings on market co-moments, J. Int. Financial Mark. Inst. Money, 21, 851, 10.1016/j.intfin.2011.06.006
Ji, 2019, Dynamic connectedness and integration in cryptocurrency markets, Int. Rev. Financ. Anal., 63, 257, 10.1016/j.irfa.2018.12.002
Kolm, 2014, 60 years of portfolio optimization: Practical challenges and current trends, European J. Oper. Res., 234, 356, 10.1016/j.ejor.2013.10.060
Koutmos, 2018, Return and volatility spillovers among cryptocurrencies, Econom. Lett., 173, 122, 10.1016/j.econlet.2018.10.004
Krokhmal, 2002, Portfolio optimization with conditional value-at-risk objective and constraints, J. Risk, 4, 43, 10.21314/JOR.2002.057
Newey, 1987, A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix, Econometrica, 55, 703, 10.2307/1913610
Osterrieder, 2017, A statistical risk assessment of Bitcoin and its extreme tail behavior, Ann. Financial Econ., 12, 10.1142/S2010495217500038
Rietz, 1988, The equity risk premium a solution, J. Monetary Econ., 22, 117, 10.1016/0304-3932(88)90172-9
Rockafellar, 2002, Conditional value-at-risk for general loss distributions, J. Bank. Finance, 26, 1443, 10.1016/S0378-4266(02)00271-6
Scaillet, 2017