Investigating design parameter effects on the curvature of composite soft actuators by automated numerical simulation with Python integration

Trinh Xuan Hiep1, Van Binh Phung2
1\(^1\) Faculty of Mechanical Engineering, Le Quy Don Technical University, Hanoi, Vietnam
2\(^2\) Faculty of Aerospace Engineering, Le Quy Don Technical University, Hanoi, Vietnam

Tóm tắt

In the realm of soft robotics, investigating the effect of design parameters on the deformation of complex structures like soft composite actuators is a challenging task. Existing mathematical models often rely on limiting assumptions, while traditional simulation approaches demand substantial computational time and resources, hindering concurrent investigations of multiple design parameters. To address these issues, this paper introduces a new technique to expedite the deformation simulation of composite soft actuators. This automation program enables automatic modification of input parameters while preserving critical properties, constraints, and boundary conditions, resulting in a significant reduction in simulation time. Compared to traditional methods requiring approximately 60 minutes for a single task, our technique achieves the same in merely 10 minutes. The developed program is applied to analyze the impact of design parameters on the curvature of composite soft actuators, leading to the identification of optimal parameters. Through experimental verification, the reliability and efficiency of our technique are demonstrated, showing simulation results with less than a 10% error when compared to physical experiments. The proposed approach enables swift investigation of design parameter influence, facilitating the identification of optimal soft robotic structures for specific objectives. As a result, it has the potential to become a promising tool for advancing soft robotics design and analysis.

Từ khóa

#soft composite actuator #numerical simulation #Python integration #soft robotic structure

Tài liệu tham khảo

<p>[1] B. Mazzolai, A. Mondini, E. Del Dottore, L. Margheri, F. Carpi, K. Suzumori, M. Cianchetti, T. Speck, S. K. Smoukov, I. Burgert, T. Keplinger, G. D. F. Siqueira, F. Vanneste, O. Goury, C. Duriez, T. Nanayakkara, B. Vanderborght, J. Brancart, S. Terryn, S. I. Rich, R. Liu, K. Fukuda, T. Someya, M. Calisti, C. Laschi, W. Sun, G. Wang, L. Wen, R. Baines, S. K. Patiballa, R. Kramer-Bottiglio, D. Rus, P. Fischer, F. C. Simmel, and A. Lendlein. Roadmap on soft robotics: multifunctionality, adaptability and growth without borders. <em>Multifunctional Materials</em>, <strong>5</strong>, (2022). <a href="https://doi.org/10.1088/2399-7532/ac4c95">https://doi.org/10.1088/2399-7532/ac4c95</a>.</p>

<p>[2] O. Yasa, Y. Toshimitsu, M. Y. Michelis, L. S. Jones, M. Filippi, T. Buchner, and R. K. Katzschmann. An overview of soft robotics. <em>Annual Review of Control, Robotics, and Autonomous Systems</em>, <strong>6</strong>, (2023), pp. 1–29. <a href="https://doi.org/10.1146/annurev-control-062322-100607">https://doi.org/10.1146/annurev-control-062322-</a><a href="https://doi.org/10.1146/annurev-control-062322-100607">100607</a>.</p>

<p>[3] M. Li, A. Pal, A. Aghakhani, A. Pena-Francesch, and M. Sitti. Soft actuators for real-world applications. <em>Nature Reviews Materials</em>, <strong>7</strong>, (2021), pp. 235–249. <a href="https://doi.org/10.1038/s41578-021-00389-7">https://doi.org/10.1038/s41578-</a><a href="https://doi.org/10.1038/s41578-021-00389-7">021-00389-7</a>.</p>

<p>[4] Y. Jiang, S. Yin, J. Dong, and O. Kaynak. A review on soft sensors for monitoring, control, and optimization of industrial processes. <em>IEEE Sensors Journal</em>, <strong>21</strong>, (2021), pp. 12868–12881. <a href="https://doi.org/10.1109/jsen.2020.3033153">https://doi.org/10.1109/jsen.2020.3033153</a>.</p>

<p>[5] C. S. X. Ng, M. W. M. Tan, C. Xu, Z. Yang, P. S. Lee, and G. Z. Lum. Locomotion of miniature soft robots. <em>Advanced Materials</em>, <strong>33</strong>, (2020). <a href="https://doi.org/10.1002/adma.202003558">https://doi.org/10.1002/adma.202003558</a>.</p>

<p>[6] A. Zolfagharian, A. Z. Kouzani, S. Y. Khoo, A. A. A. Moghadam, I. Gibson, and A. Kaynak. Evolution of 3D printed soft actuators. <em>Sensors and Actuators A: Physical</em>, <strong>250</strong>, (2016), pp. 258–272. <a href="https://doi.org/10.1016/j.sna.2016.09.028">https://doi.org/10.1016/j.sna.2016.09.028</a>.</p>

<p>[7] Y. Chen, J. Yang, X. Zhang, Y. Feng, H. Zeng, L. Wang, and W. Feng. Light-driven bimorph soft actuators: design, fabrication, and properties. <em>Materials Horizons</em>, <strong>8</strong>, (3), (2021), pp. 728–757. <a href="https://doi.org/10.1039/d0mh01406k">https://doi.org/10.1039/d0mh01406k</a>.</p>

<p>[8] Y. Tang, M. Li, T. Wang, X. Dong, W. Hu, and M. Sitti. Wireless miniature magnetic phase-change soft actuators. <em>Advanced Materials</em>, <strong>34</strong>, (2022). <a href="https://doi.org/10.1002/adma.202204185">https://doi.org/10.1002/adma.202204185</a>.</p>

<p>[9] M. Pan, C. Yuan, X. Liang, T. Dong, T. Liu, J. Zhang, J. Zou, H. Yang, and C. Bowen. Soft actuators and robotic devices for rehabilitation and assistance. <em>Advanced Intelligent Systems</em>, <strong>4</strong>, (4), (2022). <a href="https://doi.org/10.1002/aisy.202100140">https://doi.org/10.1002/aisy.202100140</a>.</p>

<p>[10] H. Al-Fahaam, S. Davis, and S. Nefti-Meziani. Power assistive and rehabilitation wearable robot based on pneumatic soft actuators. In <em>2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR)</em>, IEEE, (2016), pp. 472–477. <a href="https://doi.org/10.1109/mmar.2016.7575181">https://doi.org/10.1109/mmar.2016.7575181</a>.</p>

<p>[11] S. Chen, Y. Pang, H. Yuan, X. Tan, and C. Cao. Smart soft actuators and grippers enabled by self-powered tribo-skins. <em>Advanced Materials Technologies</em>, <strong>5</strong>, (2020). <a href="https://doi.org/10.1002/admt.201901075">https://doi.org/10.1002/admt.201901075</a>.</p>

<p>[12] H. Rodrigue, W. Wang, D.-R. Kim, and S.-H. Ahn. Curved shape memory alloy-based soft actuators and application to soft gripper. <em>Composite Structures</em>, <strong>176</strong>, (2017), pp. 398–406. <a href="https://doi.org/10.1016/j.compstruct.2017.05.056">https://doi.org/10.1016/j.compstruct.2017.05.056</a>.</p>

<p>[13] H. Su, X. Hou, X. Zhang, W. Qi, S. Cai, X. Xiong, and J. Guo. Pneumatic soft robots: challenges and benefits. <em>Actuators</em>, <strong>11</strong>, (2022). <a href="https://doi.org/10.3390/act11030092">https://doi.org/10.3390/act11030092</a>.</p>

<p>[14] Q. Xie, T. Wang, S. Yao, Z. Zhu, N. Tan, and S. Zhu. Design and modeling of a hydraulic soft actuator with three degrees of freedom. <em>Smart Materials and Structures</em>, <strong>29</strong>, (2020). <a href="https://doi.org/10.1088/1361-665x/abc26e">https://doi.org/10.1088/1361-665x/abc26e</a>.</p>

<p>[15] B. W. K. Ang and C.-H. Yeow. Design and modeling of a high force soft actuator for assisted elbow flexion. <em>IEEE Robotics and Automation Letters</em>, <strong>5</strong>, (2020), pp. 3731–3736. <a href="https://doi.org/10.1109/lra.2020.2980990">https://doi.org/10.1109/lra.2020.2980990</a>.</p>

<p>[16] G. Chen, X. Yang, X. Zhang, and H. Hu. Water hydraulic soft actuators for underwater autonomous robotic systems. <em>Applied Ocean Research</em>, <strong>109</strong>, (2021). <a href="https://doi.org/10.1016/j.apor.2021.102551">https://doi.org/10.1016/j.apor.2021.102551</a>.</p>

<p>[17] A. Miriyev, K. Stack, and H. Lipson. Soft material for soft actuators. <em>Nature Communications</em>, <strong>8</strong>, (2017). <a href="https://doi.org/10.1038/s41467-017-00685-3">https://doi.org/10.1038/s41467-017-00685-3</a>.</p>

<p>[18] J. Hu, M. Yu, M. Wang, K.-L. Choy, and H. Yu. Design, regulation, and applications of soft actuators based on liquid-crystalline polymers and their composites. <em>ACS Applied Materials </em><em>&amp; Interfaces</em>, <strong>14</strong>, (2022), pp. 12951–12963. <a href="https://doi.org/10.1021/acsami.1c25103">https://doi.org/10.1021/acsami.1c25103</a>.</p>

<p>[19] A. Miriyev, B. Xia, J. C. Joseph, and H. Lipson. Additive manufacturing of silicone composites for soft actuation. <em>3D Printing and Additive Manufacturing</em>, <strong>6</strong>, (2019), pp. 309–318. <a href="https://doi.org/10.1089/3dp.2019.0116">https://doi.org/10.1089/3dp.2019.0116</a>.</p>

<p>[20] P. Polygerinos, Z. Wang, J. T. B. Overvelde, K. C. Galloway, R. J. Wood, K. Bertoldi, and C. J. Walsh. Modeling of soft fiber-reinforced bending actuators. <em>IEEE Transactions on Robotics</em>, <strong>31</strong>, (2015), pp. 778–789. <a href="https://doi.org/10.1109/tro.2015.2428504">https://doi.org/10.1109/tro.2015.2428504</a>.</p>

<p>[21] S. Nikolov, V. Kotev, K. Kostadinov, F. Wang, C. Liang, and Y. Tian. Model-based design optimization of soft fiber-reinforced bending actuators. In <em>2016 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)</em>, IEEE, (2016), pp. 136–140. <a href="https://doi.org/10.1109/3m-nano.2016.7824949">https://doi.org/10.1109/3m-nano.2016.7824949</a>.</p>

<p>[22] M. H. Namdar Ghalati, H. Ghafarirad, A. A. Suratgar, M. Zareinejad, and M. A. AhmadiPajouh. Static modeling of soft reinforced bending actuator considering external force constraints. <em>Soft Robotics</em>, <strong>9</strong>, (2022), pp. 776–787. <a href="https://doi.org/10.1089/soro.2021.0010">https://doi.org/10.1089/soro.2021.0010</a>.</p>

<p>[23] F. Connolly, P. Polygerinos, C. J. Walsh, and K. Bertoldi. Mechanical programming of soft actuators by varying fiber angle. <em>Soft Robotics</em>, <strong>2</strong>, (2015), pp. 26–32. <a href="https://doi.org/10.1089/soro.2015.0001">https://doi.org/10.1089/soro.2015.0001</a>.</p>

<p>[24] Z. Wang, P. Polygerinos, J. T. B. Overvelde, K. C. Galloway, K. Bertoldi, and C. J. Walsh. Interaction forces of soft fiber reinforced bending actuators. <em>IEEE/ASME Transactions on Mechatronics</em>, <strong>22</strong>, (2017), pp. 717–727. <a href="https://doi.org/10.1109/tmech.2016.2638468">https://doi.org/10.1109/tmech.2016.2638468</a>.</p>

<p>[25] P. Polygerinos, Z. Wang, K. C. Galloway, R. J. Wood, and C. J. Walsh. Soft robotic glove for combined assistance and at-home rehabilitation. <em>Robotics and Autonomous Systems</em>, <strong>73</strong>, (2015), pp. 135–143. <a href="https://doi.org/10.1016/j.robot.2014.08.014">https://doi.org/10.1016/j.robot.2014.08.014</a>.</p>

<p>[26] L. Gharavi, M. Zareinejad, and A. Ohadi. Continuum analysis of a soft bending actuator dynamics. <em>Mechatronics</em>, <strong>83</strong>, (2022). <a href="https://doi.org/10.1016/j.mechatronics.2022.102739">https://doi.org/10.1016/j.mechatronics.2022.102739</a>.</p>

<p>[27] S. K. Melly, L. Liu, Y. Liu, and J. Leng. A review on material models for isotropic hyperelasticity. <em>International Journal of Mechanical System Dynamics</em>, <strong>1</strong>, (2021), pp. 71–88. <a href="https://doi.org/10.1002/msd2.12013">https://doi.org/10.1002/msd2.12013</a>.</p>

<p>[28] H. X. Trinh, P. V. Binh, L. D. Manh, N. V. Manh, and N. V. Quang. Soft robotics-fingered hand based on working principle of asymmetric soft actuator. In <em>Machine Learning and Mechanics Based Soft Computing Applications</em>, Springer Nature Singapore, (2023), pp. 89–95. <a href="https://doi.org/10.1007/978-981-19-6450-3_10">https://doi.org/10.1007/978-981-19-6450-3_10</a>.</p>