Investigating Deep Phylogenetic Relationships among Cyanobacteria and Plastids by Small Subunit rRNA Sequence Analysis1

Journal of Eukaryotic Microbiology - Tập 46 Số 4 - Trang 327-338 - 1999
Seán Turner1, Kathleen M. Pryer2, Vivian Miao3, Jeffrey D. Palmer4
1Department of Biology, Indiana University, Bloomington, 47405 USA
2Department of Botany, The Field Museum, Roosevelt Road at Lake Shore Drive, Chicago, Illinois 60605, USA
3TerraGen Diversity Inc., 2386 East Mall, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
4Department of Biology, Indiana University, Bloomington, Indiana 47405, USA

Tóm tắt

Small subunit rRNA sequence data were generated for 27 strains of cyanobacteria and incorporated into a phylogenetic analysis of 1,377 aligned sequence positions from a diverse sampling of 53 cyanobacteria and 10 photosynthetic plastids. Tree inference was carried out using a maximum likelihood method with correction for site‐to‐site variation in evolutionary rate. Confidence in the inferred phylogenetic relationships was determined by construction of a majority‐rule consensus tree based on alternative topologies not considered to be statistically significantly different from the optimal tree. The results are in agreement with earlier studies in the assignment of individual taxa to specific sequence groups. Several relationships not previously noted among sequence groups are indicated, whereas other relationships previously supported are contradicted. All plastids cluster as a strongly supported monophyletic group arising near the root of the cyanobacterial line of descent.

Từ khóa


Tài liệu tham khảo

10.1006/mpev.1996.0059

Beanland T. J., 1992, The inference of evolutionary trees from molecular data, Comp. Biochem. Physiol., 1028, 643

10.1111/j.1529-8817.1995.tb02542.x

10.1007/978-3-7091-6542-3_7

10.1099/00207713-39-3-250

10.1093/oxfordjournals.molbev.a025851

10.1007/BF00245165

10.1007/978-3-7091-6542-3_3

10.1006/mpev.1995.1012

10.1007/978-94-011-0227-8_5

10.1007/BF02100678

10.1111/j.1550-7408.1995.tb01615.x

10.1007/BF01734359

10.1111/j.1558-5646.1985.tb00420.x

Felsenstein J., 1993, PHYLIP (Phylogeny Inference Package) version 3.5c. Distributed by the author

10.1093/sysbio/42.2.193

Ferris M. J., 1996, Enrichment culture and microscopy conceal diverse thermophilic Synechococcus populations in a single hot spring microbial mat habitat, Appl. Environm. Microbiol., 62, 1045, 10.1128/aem.62.3.1045-1050.1996

10.1007/s002030050599

10.1128/jb.170.8.3584-3592.1988

10.1016/S0074-7696(08)62068-9

10.1007/BF00425248

10.1093/nar/21.13.3051

10.1007/BF00170674

10.1093/sysbio/42.2.182

10.1038/369363a0

10.1016/0169-5347(92)90008-Y

Huelsenbeck J. P., 1998, Systematic bias in phylogenetic analysis: is the Strepsiptera problem solved, Syst. Biol., 47, 519

10.2323/jgam.43.237

10.1093/oxfordjournals.molbev.a025739

Kane M., 1997, Molecular phylogenetic relationship between strains of cyanobacterial picoplankton in Lake Biwa, Japan, J. Mar. Biotechnol., 5, 41

10.1093/dnares/2.4.153

10.1007/BF02100115

10.1126/science.275.5305.1485

10.1007/BF02669188

Kuhner M. K., 1994, A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates, Mol. Biol. Evol., 11, 459

10.1006/mpev.1993.1021

Lee R. E., 1989, Phycology

Lewin R. A., 1989, Bergey's Manual of Systematic Bacteriology, 1709

10.1093/nar/19.16.4553

10.1073/pnas.89.7.2742

Lockhart P., 1994, Recovering evolutionary trees under a more realistic model of sequence evolution, Mol. Biol. Evol., 11, 605

10.1007/BF00182392

Göer S., 1994, Plastid lineages, Progr. Phycol. Res., 10, 137

Maddison W. P., 1992, MacClade: analysis of phylogeny and character evolution. Version 3.0

10.1093/nar/24.1.82

10.1007/BF00434086

10.1016/S0003-9365(11)80318-0

10.1007/BF00518169

10.1006/lich.1997.0114

10.1038/30965

10.1099/00207713-47-3-693

10.1007/BF02198845

Nelissen B., 1995, An early origin of plastids within the cyanobacterial divergence is suggested by evolutionary trees based on complete 16S rRNA sequences, Mol. Biol. Evol., 12, 1166

10.1016/S0723-2020(11)80009-3

10.1007/BF02669254

10.1101/SQB.1987.052.01.090

Olsen G. J., 1994, fast‐DNAml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood, Computer Applic. Biosci., 10, 41

Page R. D. M., 1996, TREEVIEW: An application to display phylogenetic trees on personal computers, Computer Applic. Biosci., 12, 357

Paquin B., 1997, Origin and evolution of Group I introns in cyanobacterial tRNA genes, J. Bacteriol., 179, 6798, 10.1128/jb.179.21.6798-6806.1997

Philippe H., 1997, Rodent monophyly: pitfalls of molecular phylonies, J. Mol. Evol., 45, 712

10.1007/BF01464365

10.1016/0076-6879(88)67081-9

10.1007/BF02669187

Reeves R. H., 1996, 16S ribosomal RNA and the molecular phylogeny of the cyanobacteria, Beih. Nova Hedwigia, 112, 55

Rippka R., 1992, Pasteur Culture Collection of Cyanobacteria Catalogue & Taxonomic Handbook. 1. Catalogue of Strains

10.1007/BF00446333

Rudi K., 1997, Strain characterization and classification of oxyphotobacteria in clone cultures on the basis of 16S rRNA sequences from the variable regions V6. V7. and V8, Appl. Environm. Microbiol., 63, 2593, 10.1128/aem.63.7.2593-2599.1997

10.1007/s002030050367

10.1007/BF02669186

10.1093/oxfordjournals.molbev.a025664

10.1093/oxfordjournals.molbev.a025756

Swofford D. L., 1997, PAUP*: Phylogenetic Analysis Using Parsimony (* and other methods), Version 4.0.” Program and Documentation

10.1029/96PA03934

10.1093/oxfordjournals.molbev.a040195

10.1007/BF00352505

10.1007/978-3-7091-6542-3_2

10.1038/355267a0

10.1007/PL00006294

10.1093/nar/25.1.111

10.1073/pnas.94.11.5967

Wakeley J., 1994, Substitution‐rate variation among sites and the estimation of transition bias, Mol. Biol. Evol., 11, 436

Waterbury J. B., 1989, Sergey's Manual of Systematic Bacteriology, 1746

10.1007/978-94-011-0227-8_1

10.1099/13500872-140-8-2159

10.1016/0014-5793(93)81499-P

10.1111/j.0022-3646.1992.00828.x

Zharkikh A., 1992, Statistical properties of bootstrap estimation of phylogenetic variability from nucleotide sequences. I. Four taxa with a molecular clock, Mol. Biol. Evol., 9, 1119

10.1006/mpev.1995.1005