Inverted‐U relationship between the level of peripheral corticosterone and the magnitude of hippocampal primed burst potentiation

Hippocampus - Tập 2 Số 4 - Trang 421-430 - 1992
David M. Diamond1,2, Michael Bennett1, Monika Fleshner3, Gregory M. Rose1,2,4
1Department of Pharmacology, University of Colorado Health Sciences Center, Denver, CO U.S.A.
2Medical Research Service, Veterans Administration Medical Center, Denver, CO U.S.A.
3Department of Microbiology/Immunology, University of Colorado Health Sciences Center, Denver, CO, U.S.A.
4Neurosciences Training Program, University of Colorado Health Sciences Center, Denver, CO, U.S.A.

Tóm tắt

Abstract

Studies have shown that peripheral levels of corticosterone correlate with the magnitudes of two well‐described physiological models of memory, long‐term potentiation (LTP) and primed burst (PB) potentiation. In the present experiments, the authors investigated the effects of experimenter‐controlled manipulations of the levels of corticosterone on the magnitude of hippocampal PB potentiation in urethane‐anesthetized rats. Primed burst potentiation is a long‐lasting (at least 30 minutes) increase in the amplitude of the CA1 population spike and EPSP slope in response to physiologically patterned stimulation of the hippocampal commissure. The levels of serum corticosterone were controlled by implanting corticosterone pellets in adrenalectomized rats (ADX/PELLET). In the first experiment, a significant negative linear correlation between elevated (stress) levels of serum corticosterone (greater than 20 μm/dL) and the magnitude of PB potentiation in ADX/PELLET subjects (r = 0.60, P <.05) was found. In the second experiment, the shape of the corticosterone‐PB potentiation function was different at low and intermediate levels of corticosterone than it was at high levels of corticosterone: There was a positive correlation at low levels (0–10 μm/dL), a peak response at intermediate levels (11–20 μm/dL), and a negative correlation at high levels (21–93 μm/dL) of corticosterone. Thus, the overall relationship between corticosterone and PB potentiation is an inverted‐U function. These findings provide strong support for the hypothesis that corticosterone exerts a concentration‐dependent biphasic influence on the expression of hippocampal plasticity.

Từ khóa


Tài liệu tham khảo

10.1037/0021-9010.61.1.30

10.1016/0304-3940(81)90454-7

10.1159/000122672

Bennet M. C., 1991, Serum corticosterone level predicts the magnitude of hippocampal primed burst potentiation and depression in urethane‐anesthetized rats, Psychobiology, 19, 301, 10.3758/BF03332083

10.1016/0301-0511(90)90011-K

10.1159/000121724

10.1016/S0079-6123(08)64096-0

10.1016/0024-3205(81)90090-4

10.1016/S0163-1047(83)90910-X

10.1016/0024-3205(84)90336-9

10.1016/0301-0511(80)90037-X

Broadbent D. E., 1971, Decision and Stress

10.1037/h0049114

10.1016/0001-6918(59)90105-2

10.1016/0031-9384(71)90037-0

10.1016/0006-8993(73)90265-5

Dallman M. F., 1989, Corticosteroids In homeostasis, Acta Physiol. Scand., 583, 27

10.1016/0022-3999(62)90058-2

10.1016/0031-9384(88)90149-7

10.1016/0031-9384(90)90079-J

10.1016/0031-9384(90)90375-E

de Weid D., 1967, Opposite effects of ACTH and glucocorticoids on extinction of conditioned avoidance behavior, Excerpta Medica Int. Cong. Series, 133, 945

Diamond D. M., 1988, Characteristics of hippocampal primed burst potentiation in vitro and in the awake rate, J. Neurosci., 8, 4079, 10.1523/JNEUROSCI.08-11-04079.1988

10.1016/0006-8993(89)90919-0

Diamond D. M., 1990, Exposure to a novel environment interferes with the induction of hippocampal primed burst potentiation, Psychobiology, 18, 273, 10.3758/BF03327243

10.1016/0361-9230(87)90049-9

10.1016/0960-0760(91)90171-Z

Finney D. J., 1978, Statistical Methods in Biological Assay

10.1016/S0163-1047(87)90664-9

10.1016/0006-8993(85)90209-4

10.1016/0018-506X(77)90010-1

10.1016/S0091-6773(76)91539-X

10.1016/S0091-6773(75)91784-8

10.1016/0006-8993(84)91124-7

10.1159/000125017

10.1016/0031-9384(78)90083-5

Hockey R., 1983, Stress and Fatigue in Human Performance

10.1126/science.2781292

10.1073/pnas.87.12.4495

Joëls M., 1991, Mineralocorticoid hormones suppress serotonin‐induced hyperpolarization of rat hippocampal CA1 neurons, J. Neurosci., 11, 2288, 10.1523/JNEUROSCI.11-08-02288.1991

10.1016/0039-128X(78)90034-X

10.1016/0306-4530(76)90012-3

10.1016/0018-506X(77)90032-0

10.1126/science.7063862

10.1016/0006-8993(85)90641-9

10.1111/j.1365-2826.1992.tb00339.x

10.1016/0361-9230(89)90220-7

10.1016/0031-9384(79)90330-5

10.1037/h0077560

10.1037/h0077700

10.1037/0735-7044.105.6.798

10.1016/0304-3940(77)90081-7

10.1159/000125400

Pavlides C., 1991, The effects of glucocorticoids on hippocampal plasticity, Soc. Neurosci. Abst., 17, 1408

10.1126/science.172.3981.394

10.1016/0361-9230(84)90102-3

10.1210/endo-117-6-2505

10.1001/archpsyc.1984.01790140069008

10.1126/science.2704997

10.1159/000125318

10.1016/0006-8993(90)91270-Q

Shors T. J., 1991, Acute stress increases 3H‐AMPA binding to the AMPA/Quisqualate receptor in the hippocampus and the increase is not glucocorticoid‐dependent, Soc. Neurosci. Abst., 17, 915

10.1111/j.2042-7158.1964.tb07519.x

10.1037/h0043340

10.1113/jphysiol.1987.sp016517

10.1016/0006-8993(91)90302-C

Tocco G., 1991, Effects of stress and corticosterone on the binding properties of glutamate receptors, Soc. Neurosci. Abst., 17, 1537

10.1016/S0079-6123(08)61535-6

10.1016/0006-8993(86)90007-7

10.1016/0006-8993(91)90207-C

10.1002/cne.920180503