Inverse Problems for Sturm–Liouville Operators on Noncompact Trees
Tóm tắt
We study Sturm–Liouville differential operators on noncompact graphs without cycles (i.e., on trees) with standard matching conditions in internal vertices. First we establish properties of the spectral characteristics and then we investigate the inverse problem of recovering the operator from the so-called Weyl vector. For this inverse problem we prove a uniqueness theorem and propose a procedure for constructing the solution using the method of spectral mappings.