Introduction to the foundations of causal discovery

International Journal of Data Science and Analytics - Tập 3 Số 2 - Trang 81-91 - 2017
Frederick Eberhardt1
1California Institute of Technology, Pasadena, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Chalupka, K., Perona, P., Eberhardt, F.: Visual causal feature learning. In: Proceedings of UAI (2015)

Chalupka, K., Perona, P., Eberhardt, F.: Multi-level cause-effect systems. In: Proceedings of AISTATS (2016)

Dash, D.: Restructuring dynamic causal systems in equilibrium. In: Proceedings of AISTATS (2005)

Dash, D., Druzdzel, M.: Caveats for causal reasoning with equilibrium models. In: European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty, pp. 192–203. Springer, Berlin (2001)

Eberhardt, F., Scheines, R.: Interventions and causal inference. Philos. Sci. 74(5), 981–995 (2007)

Fisher, R.: The design of experiments. Hafner (1935)

Frydenberg, M.: The chain graph markov property. Scand J Stat 17, 333–353 (1990)

Geiger, D., Pearl, J.: On the logic of causal models. In: Proceedings of UAI (1988)

Gillispie, S., Perlman, M.: The size distribution for Markov equivalence classes of acyclic digraph models. Artif. Intell. 141(1), 137–155 (2002)

Glymour, C.: Markov properties and quantum experiments. In: Demopoulos, W., Pitowsky, I. (eds.) Physical Theory and Its Interpretation: Essays in Honor of Jeffrey Bub. Springer, Berlin (2006)

He, Y., Jia, J., Yu, B.: Counting and exploring sizes of Markov equivalence classes of directed acyclic graphs. J. Mach. Learn. Res. 16, 2589–2609 (2015)

Hitchcock, C.: Causation. In: Psillos, S., Curd, M. (eds.) The Routledge Companion to Philosophy of Science. Routledge, London (2008)

Hitchcock, C.: Probabilistic causality. In: Stanford Encyclopedia of Philosophy. The Metaphysics Research Lab, Stanford University, (2010) https://plato.stanford.edu/cite.html

Hoyer, P., Janzing, D., Mooij, J., Peters, J., Schölkopf, B.: Nonlinear causal discovery with additive noise models. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems, vol. 21, Curran Associates Inc., pp. 689–696 (2008)

Hoyer, P., Shimizu, S., Kerminen, A., Palviainen, M.: Estimation of causal effects using linear non-Gaussian causal models with hidden variables. Int. J. Approx. Reason. 49, 362–378 (2008)

Hyttinen, A., Eberhardt, F., Järvisalo, M.: Constraint-based causal discovery: conflict resolution with answer set programming. In: Proceedings of UAI (2014)

Hyttinen, A., Eberhardt, F., Järvisalo, M.: Do-calculus when the true graph is unknown. In: Proceedings of UAI (2015)

Hyttinen, A., Hoyer, P., Eberhardt, F., Järvisalo, M.: Discovering cyclic causal models with latent variables: a general SAT-based procedure. In: Proceedings of UAI, pp. 301–310. AUAI Press (2013)

Hyttinen, A., Plis, S., Järvisalo, M., Eberhardt, F., Danks, D.: Causal discovery from subsampled time series data by constraint optimization. In: Proceedings of PGM (2016)

Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis, vol. 46. Wiley, London (2004)

Jantzen, B.: Projection, symmetry, and natural kinds. Synthese 192(11), 3617–3646 (2015)

Klatsky, A.: Drink to your health? Scientific American 288(2), 75–81 (2003)

Lacerda, G., Spirtes, P., Ramsey, J., Hoyer, P.O.: Discovering cyclic causal models by independent components analysis. In: Proceedings of UAI, pp. 366–374 (2008)

Magliacane, S., Claassen, T., Mooij, J.: Ancestral causal inference. arXiv:1606.07035 (2016)

Maier, M., Marazopoulou, K., Arbour, D., Jensen, D.: A sound and complete algorithm for learning causal models from relational data. Proceedings of UAI (2013)

Meek, C.: Strong completeness and faithfulness in Bayesian networks. In: Proceedings of UAI, pp. 411–418. Morgan Kaufmann Publishers Inc. (1995)

Mooij, J., Janzing, D., Peters, J., Schölkopf, B.: Regression by dependence minimization and its application to causal inference in additive noise models. In: Proceedings of ICML, pp. 745–752 (2009)

Nyberg, E., Korb, K.: Informative interventions. In: Williamson, J., (ed.) Causality and Probability in the Sciences. College Publications (2006)

Park, G., Raskutti, G.: Learning large-scale poisson dag models based on overdispersion scoring. In: Advances in Neural Information Processing Systems, pp. 631–639 (2015)

Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, Los Altos (1988)

Pearl, J.: Causality. Oxford University Press, Oxford (2000)

Pearl, J., Verma, T.: Equivalence and synthesis of causal models. In: Proceedings of Sixth Conference on Uncertainty in Artijicial Intelligence, pp. 220–227 (1991)

Peters, J., Janzing, D., Schölkopf, B.: Identifying cause and effect on discrete data using additive noise models. In: Proceedings of AISTATS, pp. 597–604 (2010)

Peters, J., Janzing, D., Schölkopf, B.: Causal inference on discrete data using additive noise models. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2436–2450 (2011)

Peters, J., Mooij, J., Janzing, D., Schölkopf, B.: Identifiability of causal graphs using functional models. In: Proceedings of UAI, pp. 589–598. AUAI Press (2011)

Richardson, T.: Feedback models: Interpretation and discovery. Ph.D. thesis, Carnegie Mellon University (1996)

Schulte, O., Khosravi, H., Kirkpatrick, A., Gao, T., Zhu, Y.: Modelling relational statistics with Bayes nets. Mach. Learn. 94(1), 105–125 (2014)

Shalizi, C., Moore, C.: What is a macrostate? Subjective observations and objective dynamics. arXiv:cond-mat/0303625 (2003)

Shimizu, S., Hoyer, P., Hyvärinen, A., Kerminen, A.: A linear non-Gaussian acyclic model for causal discovery. J. Mach. Learn. Res. 7, 2003–2030 (2006)

Sokol, A., Hansen, N.: Causal interpretation of stochastic differential equations. Electron. J. Probab. 19(100), 1–24 (2014)

Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction and Search, 2nd edn. MIT Press, Cambridge (2000)

Spirtes, P., Zhang, K.: Causal discovery and inference: concepts and recent methodological advances. Appl. Inform. 3, 3 (2016). doi: 10.1186/s40535-016-0018-x

Stekhoven, D., Moraes, I., Sveinbjörnsson, G., Hennig, L., Maathuis, M., Bühlmann, P.: Causal stability ranking. Bioinformatics 28(21), 2819–2823 (2012)

Tillman, R., Eberhardt, F.: Learning causal structure from multiple datasets with similar variable sets. Behaviormetrika 41(1), 41–64 (2014)

Triantafillou, S., Tsamardinos, I.: Constraint-based causal discovery from multiple interventions over overlapping variable sets. J. Mach. Learn. Res. 16, 2147–2205 (2015)

Triantafillou, S., Tsamardinos, I., Tollis, I.G.: Learning causal structure from overlapping variable sets. In: Proceedings of AISTATS, pp. 860–867. JMLR (2010)

Uhler, C., Raskutti, G., Bühlmann, P., Yu, B.: Geometry of the faithfulness assumption in causal inference. Ann. Stat. 41(2), 436–463 (2013)

Voortman, M., Dash, D., Druzdzel, M.: Learning why things change: the difference-based causality learner. arXiv preprint arXiv:1203.3525 (2012)

Zhang, J., Spirtes, P.: The three faces of faithfulness. Synthese 193(4), 1011–1027 (2016)

Zhang, K., Chan, L.W.: Extensions of ICA for causality discovery in the Hong Kong stock market. In: International Conference on Neural Information Processing, pp. 400–409. Springer, Berlin (2006)

Zhang, K., Hyvärinen, A.: On the identifiability of the post-nonlinear causal model. In: Proceedings of UAI, pp. 647–655. AUAI Press (2009)