Intrinsic deformable joints

Springer Science and Business Media LLC - Tập 23 - Trang 361-386 - 2010
Pierangelo Masarati1, Marco Morandini1
1Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano, Milan, Italy

Tóm tắt

This paper addresses the problem of reducing the constitutive behavior of relatively complex mechanical systems to lumped deformable components that connect two nodes of a multibody system. It is common practice, both in finite element and multibody system dynamics analysis, to refer the constitutive properties of lumped components to one of the nodes they connect. It is shown that this practice, here termed “attached,” could result in either underestimating or overestimating the couplings related to the finiteness of the relative rotation between the connected nodes. This work proposes an alternative formulation, here termed “intrinsic” that allows to correlate very well the behavior of general lumped deformable components with that resulting from the nonlinear finite element analysis of three-dimensional models of the components. Numerical examples, including the analysis of components that are widely used in the mechanical and aerospace industry, show how the proposed formulation can easily and accurately account for nonlinear geometrical effects, and thus deliver compact and accurate models suitable for the analysis of the global behavior of rather complex components.

Tài liệu tham khảo

Shabana, A.A.: Dynamics of Multibody Systems, 2nd edn. Cambridge University Press, Cambridge (1998) Schiehlen, W.: Multibody system dynamics: Roots and perspectives. Multibody Syst. Dyn. 1(2), 149–188 (1997). doi:10.1023/A:1009745432698 Shabana, A.A.: Flexible multibody dynamics: Review of past and recent developments. Multibody Syst. Dyn. 1(2), 189–222 (1997). doi:10.1023/A:1009773505418 Wasfy, T.M., Noor, A.K.: Computational strategies for flexible multibody systems. Appl. Mech. Rev. 56(6), 553–613 (2003). doi:10.1115/1.1590354 Pan, W., Haug, E.J.: Dynamic simulation of general flexible multibody systems. Mech. Based Des. Struct. Mach. 27(2), 217–251 (1999). doi:10.1080/08905459908915697 Wallrapp, O., Schwertassek, R.: Representation of geometric stiffening in multibody system simulation. Int. J. Numer. Methods Eng. 32, 1833–1850 (1991). doi:10.1002/nme.1620320818 Ambrósio, J.A.C.: Dynamics of structures undergoing gross motion and nonlinear deformations: A multibody approach. Comput. Struct. 59(6), 1001–1012 (1996). doi:10.1016/0045-7949(95)00349-5 Géradin, M., Cardona, A.: Flexible Multibody Dynamics: a Finite Element Approach. Wiley, Chichester (2001) Shabana, A.A., Schwertassek, R.: Equivalence of the floating frame of reference approach and finite element formulations. Int. J. Non-Linear Mech. 33(3), 417–432 (1998). doi:10.1016/S0020-7462(97)00024-3 Ledesma, R., Ma, Z.-D., Hulbert, G., Wineman, A.: A nonlinear viscoelastic bushing element in multibody dynamics. Comput. Mech. 17(5), 287–296 (1996). doi:10.1007/BF00368551 Kadlowec, J., Wineman, A., Hulbert, G.: Elastomer bushing response: experiments and finite element modeling. Acta Mech. 163, 25–38 (2003). doi:10.1007/s00707-003-1018-1 MSC/ADAMS User’s Manual, 2007 Abaqus Theory Manual, Abaqus Version 6.7 edition Merel, J., Wander, I., Masarati, P., Morandini, M.: Analysis of load patterns in rubber components for vehicles. In: Multibody Dynamics 2007, ECCOMAS Thematic Conference, pp. 1–19, Milan, June 25–28, 2007 Pfister, F.: Bernoulli numbers and rotational kinematics. J. Appl. Mech. 65(3), 758–763 (1998). doi:10.1115/1.2789120 Betsch, P., Menzel, A., Stein, E.: On the parametrization of finite rotations in computational mechanics. A classification of concepts with application to smooth shells. Comput. Methods Appl. Mech. Eng. 155(3–4), 273–305 (1998). doi:10.1016/S0045-7825(97)00158-8 Bauchau, O.A., Trainelli, L.: The vectorial parameterization of rotation. Nonlinear Dyn. 32(1), 71–92 (2003). doi:10.1023/A:1024265401576 Borri, M., Trainelli, L., Bottasso, C.L.: On representations and parameterizations of motion. Multibody Syst. Dyn. 4(2–3), 129–193 (2000). doi:10.1023/A:1009830626597 Merlini, T., Morandini, M.: The helicoidal modeling in computational finite elasticity. part II: multiplicative interpolation. Int. J. Solids Struct. 41(18–19), 5383–5409 (2004). doi:10.1016/j.ijsolstr.2004.02.026 Shoemake, K.: Animating rotation with quaternion curves. SIGGRAPH Comput. Graph. 19(3), 245–254 (1985) Borri, M., Bottasso, C.L.: An intrinsic beam model based on a helicoidal approximation—part I: Formulation. Intl. J. Numer. Methods Eng. 37, 2267–2289 (1994). doi:10.1002/nme.1620371308 Jelenić, G., Crisfield, M.A.: Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for statics and dynamics. Comput. Methods Appl. Mech. Eng. 171, 141–171 (1999) Krenk, S.: A vector format for conservative time integration of rotations. In: Multibody Dynamics 2007, ECCOMAS Thematic Conference, pp. 1–12, Milan, June 25–28, 2007 Cardona, A., Geradin, M.: A beam finite element non-linear theory with finite rotations. Int. J. Numer. Methods Eng. 26, 2403–2438 (1988) MBDyn Input Manual (Version 1.3) (2007) Merlini, T.: Recursive representation of orthonormal tensors. DIA-SR 03-02, Dip. Ing. Aerospaziale, Politecnico di Milano (2003) MBDyn Technical Manual (Version 1.3) (2007) Trainelli, L.: On the parameterization of rotation and rigid motion: a comprehensive picture. In: 17th Congresso nazionale AIDAA, pp. 1349–1362, Rome, Italy, September 15–19, 2003