Intrinsic Functional Connectivity As a Tool For Human Connectomics: Theory, Properties, and Optimization

Journal of Neurophysiology - Tập 103 Số 1 - Trang 297-321 - 2010
Koene R. A. Van Dijk1,2,3, Trey Hedden1,3, Archana Venkataraman4, Karleyton C. Evans5, Sara W. Lazar5, Randy L. Buckner1,5,3,6
1Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology and
2Department of Neuropsychology and Psychopharmacology, Faculty of Psychology, Maastricht University, Netherlands;
3Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts
4Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, Massachusetts; and
5Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts
6Howard Hughes Medical Institute, Cambridge, Massachusetts

Tóm tắt

Resting state functional connectivity MRI (fcMRI) is widely used to investigate brain networks that exhibit correlated fluctuations. While fcMRI does not provide direct measurement of anatomic connectivity, accumulating evidence suggests it is sufficiently constrained by anatomy to allow the architecture of distinct brain systems to be characterized. fcMRI is particularly useful for characterizing large-scale systems that span distributed areas (e.g., polysynaptic cortical pathways, cerebro-cerebellar circuits, cortical-thalamic circuits) and has complementary strengths when contrasted with the other major tool available for human connectomics—high angular resolution diffusion imaging (HARDI). We review what is known about fcMRI and then explore fcMRI data reliability, effects of preprocessing, analysis procedures, and effects of different acquisition parameters across six studies ( n = 98) to provide recommendations for optimization. Run length (2–12 min), run structure (1 12-min run or 2 6-min runs), temporal resolution (2.5 or 5.0 s), spatial resolution (2 or 3 mm), and the task (fixation, eyes closed rest, eyes open rest, continuous word-classification) were varied. Results revealed moderate to high test-retest reliability. Run structure, temporal resolution, and spatial resolution minimally influenced fcMRI results while fixation and eyes open rest yielded stronger correlations as contrasted to other task conditions. Commonly used preprocessing steps involving regression of nuisance signals minimized nonspecific (noise) correlations including those associated with respiration. The most surprising finding was that estimates of correlation strengths stabilized with acquisition times as brief as 5 min. The brevity and robustness of fcMRI positions it as a powerful tool for large-scale explorations of genetic influences on brain architecture. We conclude by discussing the strengths and limitations of fcMRI and how it can be combined with HARDI techniques to support the emerging field of human connectomics.

Từ khóa


Tài liệu tham khảo

10.1523/JNEUROSCI.3874-05.2006

10.1006/nimg.1997.0264

10.1016/j.cub.2009.04.028

10.1016/j.neuroimage.2005.06.013

10.1016/j.mri.2009.05.016

10.1016/j.pscychresns.2008.03.012

10.1016/j.biopsych.2005.02.021

10.1016/j.neuron.2007.10.038

10.1111/j.2044-8295.1968.tb01157.x

10.2466/pms.1966.23.2.399

10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O

10.1177/1073858406293182

10.1097/WCO.0b013e32832d93dd

10.1098/rstb.2005.1634

10.1109/TMI.2003.822821

10.1016/j.neuroimage.2006.02.048

10.1002/hbm.20577

10.1016/j.neuroimage.2007.11.059

10.1002/mrm.1910340409

10.1093/schbul/sbm052

10.1163/156856897X00357

10.1016/j.conb.2006.08.010

10.1196/annals.1440.011

10.1523/JNEUROSCI.5062-08.2009

10.1016/j.neuroimage.2007.01.010

10.1038/nrn2575

10.1523/JNEUROSCI.13-05-01916.1993

10.3389/neuro.09.017.2009

10.1016/j.neuroimage.2008.09.029

10.1016/j.neuroimage.2009.04.048

10.1016/j.neuroimage.2009.05.012

10.1097/01.wnr.0000239956.45448.4c

10.1002/mrm.1197

10.1073/pnas.96.18.10422

10.1038/nrn755

Cordes D, 2000, Am J Neuroradiol, 21, 1636

10.1006/nimg.2001.0760

10.1006/nimg.1998.0424

10.1093/cercor/bhm207

10.1007/s00429-009-0208-6

10.1073/pnas.0601417103

10.1073/pnas.0901831106

10.1016/j.neuroimage.2005.08.035

10.1016/j.neuroimage.2008.04.244

10.1523/JNEUROSCI.15-09-05870.1995

10.1006/nimg.2000.0719

10.1016/S0028-3932(96)00121-2

10.1093/cercor/bhn041

Evans AC, 1993, Proc IEEE-Nuclear Scie Symp Med Imag Conf, 3, 1813

10.1016/j.neuroimage.2009.05.025

10.1073/pnas.0800376105

10.1073/pnas.0705843104

10.1016/j.neuroimage.2006.11.051

10.1371/journal.pcbi.1000381

10.1093/cercor/1.1.1

10.1073/pnas.0604187103

10.1038/nrn2201

10.1073/pnas.0504136102

10.1152/jn.90777.2008

10.1002/hbm.20113

10.1016/j.neuropsychologia.2006.06.017

10.1016/j.neuroimage.2008.05.059

10.1002/hbm.460020107

10.1038/jcbfm.1993.4

10.1016/j.mri.2006.04.018

10.1176/ajp.2007.164.3.450

10.1093/brain/88.2.237

10.1371/journal.pcbi.1000196

10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E

10.1007/BF00230962

10.1371/journal.pone.0005101

10.1097/WCO.0b013e328306f2c5

10.1016/j.biopsych.2006.09.020

10.1002/hbm.20537

10.1073/pnas.0135058100

10.1073/pnas.0308627101

10.1093/cercor/bhn059

10.1523/JNEUROSCI.1868-09.2009

10.1371/journal.pbio.0060159

10.1002/hbm.10022

10.1097/01.wnr.0000129997.95055.15

10.1073/pnas.0903253106

10.1007/978-1-4615-4863-8_69

10.1017/S1431927606066268

10.1523/JNEUROSCI.3189-09.2009

10.1073/pnas.0701519104

10.1073/pnas.0811168106

10.1002/hbm.20428

10.1073/pnas.0901435106

10.1016/S1053-8119(03)00112-5

10.1038/jcbfm.1984.73

10.1073/pnas.0506268103

10.1016/j.neuroimage.2007.04.039

Jenkins GM , Watts DG. Spectral Analysis and its Applications. Boca Raton, FL: Emerson–Adams, 1968.

10.1006/nimg.2002.1132

10.1523/JNEUROSCI.0573-08.2008

10.1093/brain/93.4.793

10.1152/jn.00077.2008

10.1038/nmeth0407-307

10.1016/j.neuroimage.2007.08.008

10.1093/cercor/bhn117

10.1523/JNEUROSCI.23-23-08432.2003

10.1016/j.neuroimage.2007.10.052

10.1006/nimg.2001.1052

10.1016/S0304-3940(97)00224-3

10.1093/cercor/bhp135

10.1073/pnas.89.12.5675

10.1073/pnas.0900924106

10.1002/jmri.1076

10.1073/pnas.0902455106

10.1002/1096-9861(20001204)428:1<79::AID-CNE7>3.0.CO;2-Q

10.1038/nrn2391

10.3171/2008.10.JNS08846

Liu H, 2009, Proc Natl Acad Sci, 111, 746

10.1038/nature06293

10.1016/j.jneumeth.2008.03.021

10.1006/nimg.1997.0315

10.1016/j.neuroimage.2005.07.005

10.1016/j.neuroimage.2003.12.042

10.1016/j.neuroimage.2007.05.019

Margulies DS, Proc Natl Acad Sci

10.1080/096582199387733

Meindl T, Hum Brain Mapp

10.1093/brain/121.6.1013

Mesulam M-M. Principles of Behavioral and Cognitive Neurology. New York: Oxford Univ. Press, 2000.

10.1016/j.neuroimage.2008.09.062

10.1006/brcg.1999.1099

10.1006/nimg.2000.0568

Minka T. Automatic Choice of Dimensionality for PCA. MIT Media Lab Vision and Modeling Group, 2000 (Technical Report 514).

10.1002/mrm.10074

10.1016/j.neuroimage.2008.09.036

10.1002/hbm.20294

10.1016/S0013-4694(97)00066-7

10.1073/pnas.89.13.5951

O'Reilly JX, Cereb Cortex

10.1016/0006-8993(69)90141-3

10.1016/S0959-4388(00)00081-7

10.1523/JNEUROSCI.17-09-03178.1997

10.1523/JNEUROSCI.4867-08.2009

10.1073/pnas.98.2.676

10.1016/j.neuroimage.2008.11.030

Rubinov M, Neuroimage

10.1006/nimg.1999.0459

Schmahmann JD , Doyon J , Toga A , Evans A , Petrides M. MRI Atlas of the Human Cerebellum. San Diego, CA: Academic, 2000.

10.1080/14734220701490995

10.1016/j.neuron.2009.03.024

10.1093/cercor/bhn256

Sheline YI, Biol Psychiatry

10.1167/8.9.15

10.1016/j.acra.2009.02.001

10.1016/j.neuroimage.2007.07.037

10.1073/pnas.0905267106

10.1073/pnas.0708803104

10.1371/journal.pone.0001049

10.1371/journal.pcbi.0010042

10.1016/j.neuroimage.2006.04.182

10.1002/mrm.10268

10.1016/j.jneumeth.2007.11.031

10.1002/hbm.20531

10.1016/0959-4388(94)90066-3

10.1002/hbm.20729

10.1002/hbm.20022

10.1152/jn.90355.2008

10.1038/nature05758

10.1152/jn.00048.2006

10.1016/j.neuroimage.2005.07.048

10.1126/science.281.5380.1188

10.1002/hbm.20324

10.1002/hbm.20069

10.1038/30918

10.1002/mrm.20642

10.1016/j.neuroimage.2009.05.005

10.1073/pnas.0809141106

10.1016/S0730-725X(02)00563-5

10.1016/j.neuroimage.2003.11.025

10.1016/j.neuroimage.2008.05.035

Yan L, 2008, Funct Neurol, 23, 141

10.1016/j.neuroimage.2009.05.080

10.1371/journal.pone.0005743

10.1016/j.neuroimage.2007.01.054

Zar JH. Biostatistical Analysis. Upper Saddle River NJ: Prentice Hall, 1996.

10.1152/jn.90463.2008

10.1016/j.jalz.2008.04.006

10.1016/j.schres.2007.05.029

Zuo XN, 2009, Neuroimage