Intrinsic Electrocatalytic Activity for Oxygen Evolution of Crystalline 3d‐Transition Metal Layered Double Hydroxides

Angewandte Chemie - Tập 133 Số 26 - Trang 14567-14578 - 2021
Fabio Dionigi1,2, Jing Zhu3,2, Zhenhua Zeng4, Thomas Merzdorf1, Hannes Sarodnik1, Manuel Gliech1, Lujin Pan1, Wei‐Xue Li3, Jeffrey Greeley4, Peter Strasser1
1The Electrochemical Energy, Catalysis, and Materials Science Laboratory, Department of Chemistry, Chemical Engineering Division, Technical University Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany
2these authors contributed equally to this work
3School of Chemistry and Materials Science, CAS Excellence Center for Nanoscience, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230026 Anhui, China
4Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907 USA

Tóm tắt

AbstractLayered double hydroxides (LDHs) are among the most active and studied catalysts for the oxygen evolution reaction (OER) in alkaline electrolytes. However, previous studies have generally either focused on a small number of LDHs, applied synthetic routes with limited structural control, or used non‐intrinsic activity metrics, thus hampering the construction of consistent structure–activity‐relations. Herein, by employing new individually developed synthesis strategies with atomic structural control, we obtained a broad series of crystalline α‐MA(II)MB(III) LDH and β‐MA(OH)2 electrocatalysts (MA=Ni, Co, and MB=Co, Fe, Mn). We further derived their intrinsic activity through electrochemical active surface area normalization, yielding the trend NiFe LDH > CoFe LDH > Fe‐free Co‐containing catalysts > Fe‐Co‐free Ni‐based catalysts. Our theoretical reactivity analysis revealed that these intrinsic activity trends originate from the dual‐metal‐site nature of the reaction centers, which lead to composition‐dependent synergies and diverse scaling relationships that may be used to design catalysts with improved performance.

Từ khóa


Tài liệu tham khảo

 

10.1126/science.aaf5050

10.1002/aenm.201601275

10.1126/science.1162018

10.1039/C4EE03869J

 

10.1002/cctc.201000397

10.1126/science.1212858

10.1063/1.1742029

10.1021/j100238a048

10.1016/0013-4686(84)85004-5

10.1021/ja407115p

 

10.1016/j.jelechem.2009.11.024

10.1038/nmat3313

 

10.1038/ncomms9625

10.1021/ja307507a

10.1021/jp3126768

10.1021/acs.jpclett.5b01650

10.1149/1.2100463

10.1038/s41560-020-0576-y

10.1038/s41560-020-0638-1

 

10.1021/acs.jpcc.7b10306

10.1021/ja511559d

10.1038/s41467-020-16237-1

 

10.1007/s11706-012-0162-8

10.1021/acscatal.5b01638

 

10.1002/celc.201300229

10.1039/C4EE00436A

10.1007/s12274-019-2391-y

10.1021/acscatal.9b00532

10.1016/j.coelec.2018.03.025

10.1002/adfm.202005060

10.1021/acscatal.0c03865

 

10.1038/s41929-019-0376-6

10.1016/j.jelechem.2010.10.004

 

10.1021/acs.chemmater.0c01894

10.1038/s41586-020-2908-2

 

10.1073/pnas.1722034115

10.1021/jacs.8b02225

10.1002/celc.201700445

10.1002/elan.201600178

10.1016/j.jelechem.2006.11.008

 

10.1021/jacs.5b00281

10.1002/aenm.201600621

10.1021/ja502379c

10.1021/ja5096733

10.1038/s41929-018-0162-x

10.1038/ncomms5477

10.1021/acscatal.5b01551

10.1021/acscatal.9b02006

10.1016/j.jelechem.2009.03.019

 

10.1002/anie.201915803

10.1002/ange.201915803

10.1039/C8EE01063C

 

10.1038/nchem.1874

10.1002/cphc.201000294

 

10.1021/acsaem.9b01480

10.1021/acscatal.8b01432

10.1126/science.aat8051

10.1021/jacs.5b10699