Intraoperative neurophysiology in pediatric neurosurgery: a historical perspective

Springer Science and Business Media LLC - Tập 39 - Trang 2929-2941 - 2023
Francesco Sala1
1Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy

Tóm tắt

Intraoperative neurophysiology (ION) has been established over the past three decades as a valuable discipline to improve the safety of neurosurgical procedures with the main goal of reducing neurological morbidity. Neurosurgeons have substantially contributed to the development of this field not only by implementing the use and refinement of ION in the operating room but also by introducing novel techniques for both mapping and monitoring of neural pathways. This review provides a personal perspective on the evolution of ION in a variety of pediatric neurosurgical procedures: from brain tumor to brainstem surgery, from spinal cord tumor to tethered cord surgery. The contribution of pediatric neurosurgeons is highlighted showing how our discipline has played a crucial role in promoting ION at the turn of the century. Finally, a view on novel ION techniques and their potential implications for pediatric neurosurgery will provide insights into the future of ION, further supporting the view of a functional, rather than merely anatomical, approach to pediatric neurosurgery.

Tài liệu tham khảo

Nash C, Brodkey J, Croft T (1972) A model for electrical monitoring of spinal cord function in scoliosis patients undergoing correction. J Bone Joint Surg Am 54:197–198 Møller AR, Jannetta P, Bennett M, Møller MB (1981) Intracranially recorded responses from the human auditory nerve: new insights into the origin of brain stem evoked potentials (BSEPs). Electroencephalogr Clin Neurophysiol 52(1):18–27. https://doi.org/10.1016/0013-4694(81)90184-X Bartholow R (1874) Experimental investigations into the function of the human brain. Am J Med Sci Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60(4):389–443. https://doi.org/10.1093/brain/60.4.389 Ojemann GA (1979) Individual variability in cortical localization of language. J Neurosurg 50(2):164–169. https://doi.org/10.3171/jns.1979.50.2.0164 Ojemann G, Ojemann J, Lettich E, Berger M (1989) Cortical language localization in left, dominant hemisphere: an electrical stimulation mapping investigation in 117 patients. J Neurosurg 71(3):316–326. https://doi.org/10.3171/jns.1989.71.3.0316 Duffau H (2021) Brain connectomics applied to oncological neuroscience: from a traditional surgical strategy focusing on glioma topography to a meta-network approach. Acta Neurochir 163(4):905–917. https://doi.org/10.1007/s00701-021-04752-z Penfield W (1954) Combined regional and general anesthesia for craniotomy and cortical exploration. I. Neurosurgical considerations. Curr Res Anesth Analg 33(3):145–155 Berger MS, Kincaid J, Ojemann GA, Lettich E (1989) Brain mapping techniques to maximize resection, safety, and seizure control in children with brain tumors. Neurosurgery 25:786–792. https://doi.org/10.1097/00006123-198911000-00015 Bello L, Riva M, Fava E, Ferpozzi V, Castellano A, Raneri F, Pessina F, Bizzi A, Falini A, Cerri G (2014) Tailoring neurophysiological strategies with clinical context enhances resection and safety and expands indications in gliomas involving motor pathways. Neuro Oncol 16(8):1110–1128. https://doi.org/10.1093/neuonc/not327 Cedzich C, Taniguchi M, Schäfer S, Schramm J (1996) Somatosensory evoked potential phase reversal and direct motor cortex stimulation during surgery in and around the central region. Neurosurgery 38(5):962–970. https://doi.org/10.1097/00006123-199605000-00023 Wood CC, Spencer DD, Allison T, McCarthy G, Williamson PD, Goff WR (1988) Localization of human sensorimotor cortex during surgery by cortical surface recording of somatosensory evoked potentials. J Neurosurg 68(1):99–111. https://doi.org/10.3171/jns.1988.68.1.0099 Berger MS, Ojemann GA, Lettich E (1990) Neurophysiological monitoring during astrocytoma surgery. Neurosurg Clin N Am 1(1):65–80 Nespeca M, Wyllie E, Luders H et al (1990) EEG recording and functional localization studies with subdural electrodes in infants and young children. J Epilepsy 3:107–124 Duchowny M, Jayakar P (1993) Functional cortical mapping in children. Adv Neurol 63:149–154 Chitoku S, Otsubo H, Harada Y, Jay V, Rutka JT, Weiss SK, Abdoll M, Snead OC (2001) Extraoperative cortical stimulation of motor function in children. Pediatr Neurol 24(5):344–350. https://doi.org/10.1016/S0887-8994(01)00264-8 Signorelli F, Guyotat J, Mottolese C, Schneider F, D’Acunzi G, Isnard J (2004) Intraoperative electrical stimulation mapping as an aid for surgery of intracranial lesions involving motor areas in children. Childs Nerv Syst 20(6):420–426. https://doi.org/10.1007/s00381-004-0961-z Taniguchi M, Cedzich C, Taniguchi M, Cedzich C, Schramm J (1993) Modification of cortical stimulation for motor evoked potentials under general anesthesia. Neurosurgery 32(2):219–226. https://doi.org/10.1227/00006123-199302000-00011 Sala F, Kržan MJ, Deletis V (2002) Intraoperative neurophysiological monitoring in pediatric neurosurgery: why, when, how? Childs Nerv Syst 18(6–7):264–287. https://doi.org/10.1007/s00381-002-0582-3 Gallentine WB, Mikati MA (2009) Intraoperative electrocorticography and cortical stimulation in children. J Clin Neurophysiol 26(2):95–108. https://doi.org/10.1097/WNP.0b013e3181a0339d Neuloh G, Pechstein U, Cedzich C, Schramm J (2004) Motor evoked potential monitoring with supratentorial surgery. Neurosurgery 54(5):1061–1072. https://doi.org/10.1227/01.NEU.0000119326.15032.00 Zhou HH, Kelly PJ (2001) Transcranial electrical motor evoked potential monitoring for brain tumor resection. Neurosurgery 48(5):1075–1081. https://doi.org/10.1097/00006123-200105000-00021 Korn A, Constantini S (2010) Intraoperative neurophysiological monitoring and mapping in pediatric supratentorial surgery. Childs Nerv Syst 26:545–592. https://doi.org/10.1007/s00381-010-1089-y Roth J, Korn A, Sala F, Benvenisti H, Jubran M, Bitan-Talmor Y, Ekstein M, Constantini S (2020) Intraoperative neurophysiology in pediatric supratentorial surgery: experience with 57 cases. Childs Nerv Syst 36(2):315–324. https://doi.org/10.1007/s00381-019-04356-0 Ng WH, Mukhida K, Rutka JT (2010) Image guidance and neuromonitoring in neurosurgery. Childs Nerv Syst 26(4):491–502. https://doi.org/10.1007/s00381-010-1083-4 Ng WH, Ochi A, Rutka JT, Strantzas S, Holmes L, Otsubo H (2010) Stimulation threshold potentials of intraoperative cortical motor mapping using monopolar trains of five in pediatric epilepsy surgery. Childs Nerv Syst 26(5):675–679. https://doi.org/10.1007/s00381-009-0996-2 Pasquet A (1954) Combined regional and general anesthesia for craniotomy and cortical exploration. II. Anesthetic considerations. Curr Res Anesth Analg 33(3):156–164 Ratha V, Sampath N, Subramaniam S, Kumar VRR (2021) Technical considerations in awake craniotomy with cortical and subcortical motor mapping in preadolescents: pushing the envelope. Pediatr Neurosurg 56(2):171–178. https://doi.org/10.1159/000513004 Alcaraz García-Tejedor G, Echániz G, Strantzas S, Jalloh I, Rutka J, Drake J, Der T (2020) Feasibility of awake craniotomy in the pediatric population. Pediatr Anesth 30(4):480–489. https://doi.org/10.1111/pan.13833 Ojemann SG, Berger MS, Lettich E, Ojemann GA (2003) Localization of language function in children: results of electrical stimulation mapping. J Neurosurg 98(3):465–470. https://doi.org/10.3171/jns.2003.98.3.0465 Delion M, Terminassian A, Lehousse T, Aubin G, Malka J, N’Guyen S, Mercier P, Menei P (2015) Specificities of awake craniotomy and brain mapping in children for resection of supratentorial tumors in the language area. World Neurosurg 84(6):1645–1652. https://doi.org/10.1016/j.wneu.2015.06.073 Riquin E, Dinomais M, Malka J, Lehousse T, Duverger P, Menei P, Delion M (2017) Psychiatric and psychologic impact of surgery while awake in children for resection of brain tumors. World Neurosurg 102:400–405. https://doi.org/10.1016/j.wneu.2017.03.017 Matson DD (1969) Tumors of the posterior fossa. Neurosurgery of infancy and childhood, vol 228. Charles C. Thomas, pp 469–477. http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00000441-195408000-00038 Procaccio F, Gambin R, Gottin L, Bricolo A (2000) Complications of brain stem surgery: prevention and treatment. Oper Tech Neurosurg 3(2):155–157. https://doi.org/10.1053/oy.2000.6568 Barkovich AJ, Krischer J, Kun LE, Packer R, Zimmerman RA, Freeman CR, Wara WM, Albright L, Allen JC, Hoffman WTSO (1990) Brain stem gliomas: a classification system based on magnetic resonance imaging. Pediatr Neurosurg 16(2):73–83. https://doi.org/10.1159/000120511 Choux M, Lena G, Do L (2000) Brain stem tumors. Pediatric neurosurgery. Churchill Livingstone, New York, pp 471–491 Epstein F, McCleary EL (1986) Intrinsic brain-stem tumors of childhood: surgical indications. J Neurosurg 64(1):11–15. https://doi.org/10.3171/jns.1986.64.1.0011 Epstein F, Wisoff JH (1988) Intrinsic brainstem tumors in childhood: surgical indications. J Neuro Oncol 6(4):309–317. https://doi.org/10.1007/BF00177425 (PMID: 3221258) Hoffman HJ (1987) Benign brainstem gliomas in children. In: Kageyama N, Takakura K, Epstein FJ, Hoffman HJ, Schut L (eds) Progress in tumor research, vol 30. S. Karger AG, pp 154–159. https://doi.org/10.1159/000413672 Hoffman HJ, Becker L, Craven MA (1980) A clinically and pathologically distinct group of benign brain stem gliomas. Neurosurgery 7(3):243–248. https://doi.org/10.1227/00006123-198009000-00007 Bricolo A, Turazzi S (1995) Surgery for gliomas and other mass lesions of the brainstem. In: Symon L, Calliauw L, Cohadon F, Dolenc VV, Antunes JL, Nornes H, Pickard JD, Reulen H-J, Strong AJ, De Tribolet N (eds) Advances and technical standards in neurosurgery, vol 22. Springer, Vienna, pp 261–341. https://doi.org/10.1007/978-3-7091-6898-1_5 Kyoshima K, Kobayashi S, Gibo H, Kuroyanagi T (1993) A study of safe entry zones via the floor of the fourth ventricle for brain-stem lesions: report of three cases. J Neurosurg 78(6):987–993. https://doi.org/10.3171/jns.1993.78.6.0987 Lang J, Ohmachi N, Sen JL (1991) Anatomical landmarks of the rhomboid fossa (floor of the 4th ventricle), its length and its width. Acta Neurochir 113(1–2):84–90. https://doi.org/10.1007/BF01402120 Strauss C, Lütjen-Drecoll E, Fahlbusch R (1997) Pericollicular surgical approaches to the rhomboid fossa. Part I. Anatomical basis. J Neurosurg 87(6):893–899. https://doi.org/10.3171/jns.1997.87.6.0893 Strauss C, Romstöck J, Fahlbusch R (1999) Pericollicular approaches to the rhomboid fossa. Part II. Neurophysiological basis. J Neurosurg 91(5):768–775. https://doi.org/10.3171/jns.1999.91.5.0768 Strauss C, Romstöck J, Nimsky C, Fahlbusch R (1993) Intraoperative identification of motor areas of the rhomboid fossa using direct stimulation. J Neurosurg 79(3):393–399. https://doi.org/10.3171/jns.1993.79.3.0393 Morota N, Deletis V, Epstein FJ, Kofler M, Abbott R, Lee M, Ruskin K (1995) Brain stem mapping. Neurosurgery 37(5):922–930. https://doi.org/10.1227/00006123-199511000-00011 Morota N, Deletis V, Lee M, Epstein FJ (1996) Functional anatomic relationship between brain stem tumors and cranial motor nuclei. Neurosurgery 39(4):787–793. https://doi.org/10.1097/00006123-199610000-00028 Moon RDC, Walsh P, Singleton WGB, Upex A, Edwards RJ, Carter MR, Fellows GA (2022) Intra-operative neurophysiological mapping to identify distorted functional anatomy of the 4th ventricle in a 5-month-old infant. Childs Nerv Syst 38(7):1371–1375. https://doi.org/10.1007/s00381-021-05356-9 Fahlbusch R, Strauss C (1991) Surgical significance of cavernous hemangioma of the brain stem. Zentralbl Neurochir 52(1):25–32 Deletis V, Fernández-Conejero I, Ulkatan S, Rogić M, Carbó EL, Hiltzik D (2011) Methodology for intra-operative recording of the corticobulbar motor evoked potentials from cricothyroid muscles. Clin Neurophysiol 122(9):1883–1889. https://doi.org/10.1016/j.clinph.2011.02.018 Dong CCJ, MacDonald DB, Akagami R, Westerberg B, AlKhani A, Kanaan I, Hassounah M (2005) Intraoperative facial motor evoked potential monitoring with transcranial electrical stimulation during skull base surgery. Clin Neurophysiol 116(3):588–596. https://doi.org/10.1016/j.clinph.2004.09.013 Fernández-Conejero I, Ulkatan S, Sen C, Miró Lladó J, Deletis V (2022) Intraoperative monitoring of facial corticobulbar motor evoked potentials: methodological improvement and analysis of 100 patients. Clin Neurophysiol 142:228–235. https://doi.org/10.1016/j.clinph.2022.08.006 Ito E, Ichikawa M, Itakura T, Ando H, Matsumoto Y, Oda K, Sato T, Watanabe T, Sakuma J, Saito K (2013) Motor evoked potential monitoring of the vagus nerve with transcranial electrical stimulation during skull base surgeries: clinical article. J Neurosurg 118(1):195–201. https://doi.org/10.3171/2012.10.JNS12383 Sala F, Manganotti P, Tramontano V, Bricolo A, Gerosa M (2007) Monitoring of motor pathways during brain stem surgery: what we have achieved and what we still miss? Neurophysiol Clin 37(6):399–406 Sinclair CF, Téllez MJ, Tapia OR, Ulkatan S, Deletis V (2017) A novel methodology for assessing laryngeal and vagus nerve integrity in patients under general anesthesia. Clin Neurophysiol 128(7):1399–1405. https://doi.org/10.1016/j.clinph.2017.03.002 Téllez MJ, Mirallave-Pescador A, Seidel K, Urriza J, Shoakazemi A, Raabe A, Ghatan S, Deletis V, Ulkatan S (2021) Neurophysiological monitoring of the laryngeal adductor reflex during cerebellar-pontine angle and brainstem surgery. Clin Neurophysiol 132(2):622–631. https://doi.org/10.1016/j.clinph.2020.10.021 Brotchi J (1986) Neurosurgical treatment of tumors of the spinal cord. Bulletin Et Memoires De l’Academie Royale De Medecine De Belgique 141(8–10):488–495 Brotchi J, Dewitte O, Levivier M, Balériaux D, Vandesteene A, Raftopoulos C, Flament-Durand J, Noterman J (1991) A survey of 65 tumors within the spinal cord: surgical results and the importance of preoperative magnetic resonance imaging. Neurosurgery 29(5):651–656 (discussion 656–657) Fischer G, Brotchi J (1994) Intramedullary spinal cord tumors. Report. French Society of Neurosurgery. 45th annual congress. Angers, June 12–15 1994. Neuro-Chirurgie 40(Suppl 1):1–108 McCormick PC, Torres R, Post KD, Stein BM (1990) Intramedullary ependymoma of the spinal cord. J Neurosurg 72(4):523–532. https://doi.org/10.3171/jns.1990.72.4.0523 Epstein F, Epstein N (1981) Surgical management of holocord intramedullary spinal cord astrocytomas in children: report of three cases. J Neurosurg 54(6):829–832. https://doi.org/10.3171/jns.1981.54.6.0829 Epstein F, Epstein N (1982) Surgical treatment of spinal cord astrocytomas of childhood: a series of 19 patients. J Neurosurg 57(5):685–689. https://doi.org/10.3171/jns.1982.57.5.0685 Morota N, Deletis V, Constantini S, Kofler M, Cohen H, Epstein FJ (1997) The role of motor evoked potentials during surgery for intramedullary spinal cord tumors. Neurosurgery 41(6):1327–1336. https://doi.org/10.1097/00006123-199712000-00017 Scibilia A, Terranova C, Rizzo V, Raffa G, Morelli A, Esposito F, Mallamace R, Buda G, Conti A, Quartarone A, Germanò A (2016) Intraoperative neurophysiological mapping and monitoring in spinal tumor surgery: sirens or indispensable tools? Neurosurg Focus 41(2):E18. https://doi.org/10.3171/2016.5.FOCUS16141 Costa P, Peretta P, Faccani G (2013) Relevance of intraoperative D wave in spine and spinal cord surgeries. Eur Spine J 22(4):840–848. https://doi.org/10.1007/s00586-012-2576-5 Kothbauer KF, Deletis V, Epstein FJ (1998) Motor-evoked potential monitoring for intramedullary spinal cord tumor surgery: correlation of clinical and neurophysiological data in a series of 100 consecutive procedures. Neurosurg Focus 4(5):E3. https://doi.org/10.3171/foc.1998.4.5.4 Sala F, Palandri G, Basso E, Lanteri P, Deletis V, Faccioli F, Bricolo A (2006) Motor evoked potential monitoring improves outcome after surgery for intramedullary spinal cord tumors: a historical control study. Neurosurgery 58(6):1129–1143. https://doi.org/10.1227/01.NEU.0000215948.97195.58 Skrap B, Tramontano V, Faccioli F, Meglio M, Pinna G, Sala F (2021) Surgery for intramedullary spinal cord ependymomas in the neuromonitoring era: results from a consecutive series of 100 patients. J Neurosurg Spine 36(5):858–868. https://doi.org/10.3171/2021.7.SPINE21148 Kothbauer K, Deletis V, Epstein FJ (1997) Intraoperative spinal cord monitoring for intramedullary surgery: an essential adjunct. Pediatr Neurosurg 26(5):247–254. https://doi.org/10.1159/000121199 Albright AL (1998) Intraoperative spinal cord monitoring for intramedullary surgery: an essential adjunct? Pediatr Neurosurg 29(2):112–112. https://doi.org/10.1159/000028701 Zuccaro M, Zuccaro J, Samdani AF, Pahys JM, Hwang SW (2017) Intraoperative neuromonitoring alerts in a pediatric deformity center. Neurosurg Focus 43(4):E8 Jea A (2017) Intraoperative neuromonitoring: gold standard or fool’s gold? Neurosurg Focus 43(4):E9 Daniel JW, Botelho RV, Milano JB, Dantas FR, Onishi FJ, Neto ER, de Freitas Bertolini E, Borgheresi MA, Joaquim AF (2018) Intraoperative neurophysiological monitoring in spine surgery: a systematic review and meta-analysis. Spine 43(16):1154–1160. https://doi.org/10.1097/BRS.0000000000002575 Szelényi A, Bueno De Camargo A, Deletis V (2003) Neurophysiological evaluation of the corticospinal tract by D-wave recordings in young children. Childs Nerv Syst 19(1):30–34. https://doi.org/10.1007/s00381-002-0691-z Antkowiak L, Putz M, Sordyl R, Pokora S, Mandera M (2022) Relevance of intraoperative motor evoked potentials and D-wave monitoring for the resection of intramedullary spinal cord tumors in children. Neurosurg Rev 45(4):2723–2731. https://doi.org/10.1007/s10143-022-01788-2 Kothbauer K, Schmid UD, Seiler RW, Eisner W (1994) Intraoperative motor and sensory monitoring of the cauda equina. Neurosurgery 34(4):702–707. https://doi.org/10.1227/00006123-199404000-00020 Legatt AD, Schroeder CE, Gill B, Goodrich JT (1992) Electrical stimulation and multichannel EMG recording for identification of functional neural tissue during cauda equina surgery. Childs Nerv Syst 8(4):185–189. https://doi.org/10.1007/BF00262842 Kothbauer KF, Novak K (2004) Intraoperative monitoring for tethered cord surgery: an update. Neurosurg Focus 16(2):E8. https://doi.org/10.3171/foc.2004.16.2.1 James HE, Mulcahy JJ, Walsh JW, Kaplan GW (1979) Use of anal sphincter electromyography during operations on the conus medullaris and sacral nerve roots. Neurosurgery 4(6):521–523. https://doi.org/10.1227/00006123-197906000-00005 Pang D, Casey K (1983) Use of an anal sphincter pressure monitor during operations on the sacral spinal cord and nerve roots. Neurosurgery 13(5):562–568. https://doi.org/10.1227/00006123-198311000-00013 Deletis V, Vodusek DB, Abbott R, Epstein FJ, Turndorf H (1992) Intraoperative monitoring of the dorsal sacral roots. Neurosurgery 30(1):72–75. https://doi.org/10.1227/00006123-199201000-00013 Huang JC, Deletis V, Vodusek DB, Abbott R (1997) Preservation of pudendal afferents in sacral rhizotomies. Neurosurgery 41(2):411–415. https://doi.org/10.1097/00006123-199708000-00015 Pang D, Zovickian J, Moes GS (2011) Retained medullary cord in humans: late arrest of secondary neurulation. Neurosurgery 68(6):1500–1519. https://doi.org/10.1227/NEU.0b013e31820ee282 Sala F, Barone G, Tramontano V, Gallo P, Ghimenton C (2014) Retained medullary cord confirmed by intraoperative neurophysiological mapping. Childs Nerv Syst 30(7):1287–1291. https://doi.org/10.1007/s00381-014-2372-0 Deletis V, Vodusek DB (1997) Intraoperative recording of the bulbocavernosus reflex: Neurosurgery 40(1):88–93. https://doi.org/10.1097/00006123-199701000-00019 Rodi Z, Vodušek DB (2001) Intraoperative monitoring of the bulbocavernosus reflex: the method and its problems. Clin Neurophysiol 112(5):879–883. https://doi.org/10.1016/S1388-2457(01)00500-4 Kothbauer KF, Deletis V (2010) Intraoperative neurophysiology of the conus medullaris and cauda equina. Childs Nerv Syst 26(2):247–253. https://doi.org/10.1007/s00381-009-1020-6 Sala F, Squintani G, Tramontano V, Arcaro C, Faccioli F, Mazza C (2013) Intraoperative neurophysiology in tethered cord surgery: techniques and results. Childs Nerv Syst 29(9):1611–1624. https://doi.org/10.1007/s00381-013-2188-3 Morota N (2019) Intraoperative neurophysiological monitoring of the bulbocavernosus reflex during surgery for conus spinal lipoma: what are the warning criteria? J Neurosurg Pediatr 23(5):639–647. https://doi.org/10.3171/2018.12.PEDS18535 Ammerman JM, Kerr PB, Jarrell ST, Caputy AJ (2007) A novel technique for the intraoperative monitoring of detrusor activity in intradural lesions of the cauda equina. Technical note Surgical Neurology 68(3):269–271. https://doi.org/10.1016/j.surneu.2006.11.038 Kulkarni AV, Pierre-Kahn A, Zerah M (2004) Conservative management of asymptomatic spinal lipomas of the conus. Neurosurgery 54(4):868–875. https://doi.org/10.1227/01.NEU.0000114923.76542.81 Pang D, Zovickian J, Oviedo A (2010) Long-term outcome of total and near-total resection of spinal cord lipomas and radical reconstruction of the neural placode, Part II: outcome analysis and preoperative profiling. Neurosurgery 66(2):253–273. https://doi.org/10.1227/01.NEU.0000363598.81101.7B Sala F, Manganotti P, Grossauer S, Tramontano V, Mazza C, Gerosa M (2010) Intraoperative neurophysiology of the motor system in children: a tailored approach. Childs Nerv Syst 26:473–490. https://doi.org/10.1007/s00381-009-1081-6 Matsumoto R, Nair DR, LaPresto E, Najm I, Bingaman W, Shibasaki H, Lüders HO (2004) Functional connectivity in the human language system: a cortico-cortical evoked potential study. Brain 127(10):2316–2330. https://doi.org/10.1093/brain/awh246 Giampiccolo D, Parmigiani S, Basaldella F, Russo S, Pigorini A, Rosanova M, Cattaneo L, Sala F (2021) Recording cortico-cortical evoked potentials of the human arcuate fasciculus under general anaesthesia. Clin Neurophysiol 132(8):1966–1973. https://doi.org/10.1016/j.clinph.2021.03.044 Titov O, Bykanov A, Pitskhelauri D, Danilov G (2022) Neuromonitoring of the language pathways using cortico-cortical evoked potentials: a systematic review and meta-analysis. Neurosurg Rev 45(3):1883–1894. https://doi.org/10.1007/s10143-021-01718-8 Yamao Y, Matsumoto R, Kunieda T, Nakae T, Nishida S, Inano R, Shibata S, Kikuchi T, Arakawa Y, Yoshida K, Ikeda A, Miyamoto S (2021) Effects of propofol on cortico-cortical evoked potentials in the dorsal language white matter pathway. Clin Neurophysiol 132(8):1919–1926. https://doi.org/10.1016/j.clinph.2021.04.021 D’Amico A, Sala F (2020) Intraoperative neurophysiology of the cerebellum: a tabula rasa. Childs Nerv Syst 36(6):1181–1186. https://doi.org/10.1007/s00381-020-04565-y Ashida R, Walsh P, Brooks JCW, Cerminara NL, Apps R, Edwards RJ (2022) Sensory and motor electrophysiological mapping of the cerebellum in humans. Sci Rep 12(1):177. https://doi.org/10.1038/s41598-021-04220-9 Mottolese C, Richard N, Harquel S, Szathmari A, Sirigu A, Desmurget M (2013) Mapping motor representations in the human cerebellum. Brain 136(1):330–342. https://doi.org/10.1093/brain/aws186 Giampiccolo D, Basaldella F, Badari A, Squintani GM, Cattaneo L, Sala F (2021) Feasibility of cerebello-cortical stimulation for intraoperative neurophysiological monitoring of cerebellar mutism. Childs Nerv Syst 37(5):1505–1514. https://doi.org/10.1007/s00381-021-05126-7 (Epub 2021 Apr 9)