Intracellular distribution of amyloid beta peptide and its relationship to the lysosomal system
Tóm tắt
Amyloid beta peptide (Aβ) is the main component of extraneuronal senile plaques typical of Alzheimer’s disease (AD) brains. Although Aβ is produced by normal neurons, it is shown to accumulate in large amounts within neuronal lysosomes in AD. We have recently shown that under normal conditions the majority of Aβ is localized extralysosomally, while oxidative stress significantly increases intralysosomal Aβ content through activation of macroautophagy. It is also suggested that impaired Aβ secretion and resulting intraneuronal increase of Aβ can contribute to AD pathology. However, it is not clear how Aβ is distributed inside normal neurons, and how this distribution is effected when Aβ secretion is inhibited. Using retinoic acid differentiated neuroblastoma cells and neonatal rat cortical neurons, we studied intracellular distribution of Aβ by double immunofluorescence microscopy for Aβ40 or Aβ42 and different organelle markers. In addition, we analysed the effect of tetanus toxin-induced exocytosis inhibition on the intracellular distribution of Aβ. Under normal conditions, Aβ was found in the small cytoplasmic granules in both neurites and perikarya. Only minor portion of Aβ was colocalized with trans-Golgi network, Golgi-derived vesicles, early and late endosomes, lysosomes, and synaptic vesicles, while the majority of Aβ granules were not colocalized with any of these structures. Furthermore, treatment of cells with tetanus toxin significantly increased the amount of intracellular Aβ in both perikarya and neurites. Finally, we found that tetanus toxin increased the levels of intralysosomal Aβ although the majority of Aβ still remained extralysosomally. Our results indicate that most Aβ is not localized to Golgi-related structures, endosomes, lysosomes secretory vesicles or other organelles, while the suppression of Aβ secretion increases intracellular intra- and extralysosomal Aβ.
Tài liệu tham khảo
Masters CL, Beyreuther K: Pathways to the discovery of the Abeta amyloid of Alzheimer's disease. J Alzheimers Dis 2006, 9(3 Suppl):155-161.
Selkoe DJ: The genetics and molecular pathology of Alzheimer's disease: roles of amyloid and the presenilins. Neurol Clin 2000, 18(4):903-922. 10.1016/S0733-8619(05)70232-2
Selkoe DJ: Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 2001, 81(2):741-766.
Sisodia SS: Beta-amyloid precursor protein cleavage by a membrane-bound protease. Proc Natl Acad Sci USA 1992, 89(13):6075-6079. 10.1073/pnas.89.13.6075
Rogaeva E, et al.: The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat Genet 2007, 39(2):168-177. 10.1038/ng1943
Cook DG, et al.: Alzheimer's A beta(1–42) is generated in the endoplasmic reticulum/intermediate compartment of NT2N cells. Nat Med 1997, 3(9):1021-1023. 10.1038/nm0997-1021
Hartmann T, et al.: Distinct sites of intracellular production for Alzheimer's disease A beta40/42 amyloid peptides. Nat Med 1997, 3(9):1016-1020. 10.1038/nm0997-1016
Greenfield JP, et al.: Endoplasmic reticulum and trans-Golgi network generate distinct populations of Alzheimer beta-amyloid peptides. Proc Natl Acad Sci USA 1999, 96(2):742-747. 10.1073/pnas.96.2.742
LaFerla FM, Green KN, Oddo S: Intracellular amyloid-beta in Alzheimer's disease. Nat Rev Neurosci 2007, 8(7):499-509. 10.1038/nrn2168
Yu WH, et al.: Macroautophagy–a novel Beta-amyloid peptide-generating pathway activated in Alzheimer's disease. J Cell Biol 2005, 171(1):87-98. 10.1083/jcb.200505082
Serge G, et al.: Prevention strategies for Alzheimer¿s disease. Translational Neurodegeneration 2012., 1(13): 10.1186/2047-9158-1-13
Gouras GK, et al.: Intraneuronal Abeta42 accumulation in human brain. Am J Pathol 2000, 156(1):15-20. 10.1016/S0002-9440(10)64700-1
Naslund J, et al.: Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. JAMA 2000, 283(12):1571-1577. 10.1001/jama.283.12.1571
Gouras GK, et al.: Intraneuronal beta-amyloid accumulation and synapse pathology in Alzheimer's disease. Acta Neuropathol 2010, 119(5):523-541. 10.1007/s00401-010-0679-9
D'Andrea MR, et al.: Evidence that neurones accumulating amyloid can undergo lysis to form amyloid plaques in Alzheimer's disease. Histopathology 2001, 38(2):120-134. 10.1046/j.1365-2559.2001.01082.x
Wirths O, et al.: Intraneuronal Abeta accumulation precedes plaque formation in beta-amyloid precursor protein and presenilin-1 double-transgenic mice. Neurosci Lett 2001, 306(1–2):116-120.
Takahashi RH, et al.: Intraneuronal Alzheimer abeta42 accumulates in multivesicular bodies and is associated with synaptic pathology. Am J Pathol 2002, 161(5):1869-1879. 10.1016/S0002-9440(10)64463-X
Gandy S, et al.: Days to criterion as an indicator of toxicity associated with human Alzheimer amyloid-beta oligomers. Ann Neurol 2010, 68(2):220-230.
Knobloch M, et al.: Intracellular Abeta and cognitive deficits precede beta-amyloid deposition in transgenic arcAbeta mice. Neurobiol Aging 2007, 28(9):1297-306. 10.1016/j.neurobiolaging.2006.06.019
Tampellini D, et al.: Effects of synaptic modulation on beta-amyloid, synaptophysin, and memory performance in Alzheimer's disease transgenic mice. J Neurosci 2010, 30(43):14299-14304. 10.1523/JNEUROSCI.3383-10.2010
Tampellini D, et al.: Impaired beta-Amyloid Secretion in Alzheimer's Disease Pathogenesis. J Neurosci 2011, 31(43):15384-15390. 10.1523/JNEUROSCI.2986-11.2011
Nixon RA, Cataldo AM, Mathews PM: The endosomal-lysosomal system of neurons in Alzheimer's disease pathogenesis: a review. Neurochem Res 2000, 25(9–10):1161-1172.
Yu WH, et al.: Autophagic vacuoles are enriched in amyloid precursor protein-secretase activities: implications for beta-amyloid peptide over-production and localization in Alzheimer's disease. Int J Biochem Cell Biol 2004, 36(12):2531-2540. 10.1016/j.biocel.2004.05.010
Adamec E, et al.: Up-regulation of the lysosomal system in experimental models of neuronal injury: implications for Alzheimer's disease. Neurosci 2000, 100(3):663-675. 10.1016/S0306-4522(00)00281-5
Yang AJ, et al.: Loss of endosomal/lysosomal membrane impermeability is an early event in amyloid Abeta1-42 pathogenesis. J Neurosci Res 1998, 52(6):691-698. 10.1002/(SICI)1097-4547(19980615)52:6<691::AID-JNR8>3.0.CO;2-3
Liu J, et al.: Predominant release of lysosomal enzymes by newborn rat microglia after LPS treatment revealed by proteomic studies. J Proteome Res 2008, 7(5):2033-2049. 10.1021/pr7007779
Cataldo AM, et al.: Abeta localization in abnormal endosomes: association with earliest Abeta elevations in AD and Down syndrome. Neurobiol Aging 2004, 25(10):1263-1272. 10.1016/j.neurobiolaging.2004.02.027
Langui D, et al.: Subcellular topography of neuronal Abeta peptide in APPxPS1 transgenic mice. Am J Pathol 2004, 165(5):1465-1477. 10.1016/S0002-9440(10)63405-0
Zheng L, et al.: Autophagy of amyloid beta-protein in differentiated neuroblastoma cells exposed to oxidative stress. Neurosci Lett 2006, 394(3):184-189. 10.1016/j.neulet.2005.10.035
Zheng L, et al.: Oxidative stress induces macroautophagy of amyloid beta-protein and ensuing apoptosis. Free Radic Biol Med 2009, 46(3):422-429. 10.1016/j.freeradbiomed.2008.10.043
Zheng L, Marcusson J, Terman A: Oxidative stress and Alzheimer disease: the autophagy connection? Autophagy 2006, 2(2):143-145.
Zheng L, et al.: Oxidative stress induces intralysosomal accumulation of Alzheimer amyloid beta-protein in cultured neuroblastoma cells. Ann N Y Acad Sci 2006, 1067: 248-251. 10.1196/annals.1354.032
Eva C, et al.: Primary cultures of corticostriatal cells from newborn rats: a model to study muscarinic receptor subtypes regulation and function. J Mol Neurosci 1990, 2(3):143-153. 10.1007/BF02896839
Verderio C, et al.: Tetanus toxin blocks the exocytosis of synaptic vesicles clustered at synapses but not of synaptic vesicles in isolated axons. J Neurosci 1999, 19(16):6723-6732.
Kamal A, et al.: Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP. Nature 2001, 414(6864):643-648. 10.1038/414643a
Yankner BA, et al.: Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer's disease. Science 1989, 245(4916):417-420. 10.1126/science.2474201
Kang J, et al.: The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature 1987, 325(6106):733-736. 10.1038/325733a0
Grigoriev I, et al.: Rab6, Rab8, and MICAL3 cooperate in controlling docking and fusion of exocytotic carriers. Curr Biol 2011, 21(11):967-974. 10.1016/j.cub.2011.04.030
Diaz E, Schimmoller F, Pfeffer SR: A novel Rab9 effector required for endosome-to-TGN transport. J Cell Biol 1997, 138(2):283-290. 10.1083/jcb.138.2.283
Gouras GK, Almeida CG, Takahashi RH: Intraneuronal Abeta accumulation and origin of plaques in Alzheimer's disease. Neurobiol Aging 2005, 26(9):1235-1244. 10.1016/j.neurobiolaging.2005.05.022
Xu H, et al.: Generation of Alzheimer beta-amyloid protein in the trans-Golgi network in the apparent absence of vesicle formation. Proc Natl Acad Sci USA 1997, 94(8):3748-3752. 10.1073/pnas.94.8.3748
Hansson Petersen CA, et al.: The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proc Natl Acad Sci USA 2008, 105(35):13145-13150. 10.1073/pnas.0806192105
Pasternak SH, Callahan JW, Mahuran DJ: The role of the endosomal/lysosomal system in amyloid-beta production and the pathophysiology of Alzheimer's disease: reexamining the spatial paradox from a lysosomal perspective. J Alzheimers Dis 2004, 6(1):53-65.
Takahashi RH, et al.: Oligomerization of Alzheimer's beta-amyloid within processes and synapses of cultured neurons and brain. J Neurosci 2004, 24(14):3592-3599. 10.1523/JNEUROSCI.5167-03.2004
Billings LM, et al.: Intraneuronal Abeta causes the onset of early Alzheimer's disease-related cognitive deficits in transgenic mice. Neuron 2005, 45(5):675-688. 10.1016/j.neuron.2005.01.040
Buckig A, et al.: Cytosolic and nuclear aggregation of the amyloid beta-peptide following its expression in the endoplasmic reticulum. Histochem Cell Biol 2002, 118(5):353-360. 10.1007/s00418-002-0459-2
Lee EK, et al.: Cytosolic amyloid-beta peptide 42 escaping from degradation induces cell death. Biochem Biophys Res Commun 2006, 344(2):471-477. 10.1016/j.bbrc.2006.03.166
Maxfield FR, Wustner D: Intracellular cholesterol transport. J Clin Invest 2002, 110(7):891-898.
Ditaranto K, Tekirian TL, Yang AJ: Lysosomal membrane damage in soluble Abeta-mediated cell death in Alzheimer's disease. Neurobiol Dis 2001, 8(1):19-31. 10.1006/nbdi.2000.0364
Wang H, et al.: Amyloid-beta1-42 induces reactive oxygen species-mediated autophagic cell death in U87 and SH-SY5Y cells. J Alzheimers Dis 2010, 21(2):597-610.
Ma G, Chen S: Diazoxide and N omega-nitro-L-arginine counteracted A beta 1-42-induced cytotoxicity. Neuroreport 2004, 15(11):1813-1817. 10.1097/01.wnr.0000135694.89237.3d
Tampellini D, Gouras GK: Synapses, synaptic activity and intraneuronal abeta in Alzheimer's disease. Front Aging Neurosci 2010., 2(13): 10.3389/fnagi.2010.00013
Cirrito JR, et al.: Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo. Neuron 2005, 48(6):913-922. 10.1016/j.neuron.2005.10.028
Shengdi Chen JCZ: Translational Neurodegeneration, a platform to share knowledge and experience in translational study of neurodegenerative diseases. Translational Neurodegeneration 2012., 1(1): 10.1186/2047-9158-1-1