Interspecies assertiveness of Lactobacillus curvatus and Lactobacillus sakei in sausage fermentations
Tài liệu tham khảo
Ammor, 2005, Characterization and selection of Lactobacillus sakei strains isolated from traditional dry sausage for their potential use as starter cultures, Food Microbiol., 22, 529, 10.1016/j.fm.2004.11.016
Azevedo, 2015, Distribution and genetic diversity of bacteriocin gene clusters in rumen microbial genomes, Appl. Environ. Microbiol., 81, 7290, 10.1128/AEM.01223-15
Brooijmans, 2009, Heme and menaquinone induced electron transport in lactic acid bacteria, Microb. Cell Factories, 8, 28, 10.1186/1475-2859-8-28
Brooijmans, 2009, Lactobacillus plantarum WCFS1 electron transport chains, Appl. Environ. Microbiol., 75, 3580, 10.1128/AEM.00147-09
Cabiscol, 2000, Oxidative stress in bacteria and protein damage by reactive oxygen species, Int. Microbiol., 3, 3
Chaillou, 2005, The complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23K, Nat. Biotechnol., 23, 1527, 10.1038/nbt1160
Chaillou, 2014, Quantification and efficiency of Lactobacillus sakei strain mixtures used as protective cultures in ground beef, Meat Sci., 97, 332, 10.1016/j.meatsci.2013.08.009
Cherif, 2001, Thuricin 7: a novel bacteriocin produced by Bacillus thuringiensis BMG1.7, a new strain isolated from soil, Lett. Appl. Microbiol., 32, 243, 10.1046/j.1472-765X.2001.00898.x
Delwiche, 1961, Catalase of Pedicoccus cerevisiae, J. Bacteriol., 81, 416, 10.1128/jb.81.3.416-418.1961
Dossmann, 1996, Mathematical description of the growth of Lactobacillus sake and Lactobacillus pentosus under conditions prevailing in fermented sausages, Appl. Microbiol. Biotechnol., 46, 334, 10.1007/BF00166226
Eisenbach, 2018, Comparative genomics of Lactobacillus curvatus enables prediction of traits relating to adaptation and strategies of assertiveness in sausage fermentation, Int. J. Food Microbiol., 286, 37, 10.1016/j.ijfoodmicro.2018.06.025
Eisenbach, 2019, Comparative genomics of Lactobacillus sakei supports the development of starter strain combinations, Microbiol. Res., 221, 1, 10.1016/j.micres.2019.01.001
Giello, 2018, Impact of Lactobacillus curvatus 54M16 on microbiota composition and growth of Listeria monocytogenes in fermented sausages, Food Microbiol., 72, 1, 10.1016/j.fm.2017.11.003
Gilmore, 1996, Enterococcus faecalis cytolysin and lactocin S of Lactobacillus sake, Antonie Van Leeuwenhoek, 69, 129, 10.1007/BF00399418
Hammes, 1994, Starters in the processing of meat products, Meat Sci., 36, 155, 10.1016/0309-1740(94)90039-6
Heinze, 2018, Evaluation of promoter sequences for the secretory production of a Clostridium thermocellum cellulase in Paenibacillus polymyxa, Appl. Microbiol. Biotechnol., 102, 10147, 10.1007/s00253-018-9369-7
Hertel, 1998, Oxygen-dependent regulation of the expression of the catalase gene katA of Lactobacillus sakei LTH677, Appl. Environ. Microbiol., 64, 1359, 10.1128/AEM.64.4.1359-1365.1998
Hertzberger, 2014, H(2)O(2) production in species of the Lactobacillus acidophilus group: a central role for a novel NADH-dependent flavin reductase, Appl. Environ. Microbiol., 80, 2229, 10.1128/AEM.04272-13
Hibbing, 2010, Bacterial competition: surviving and thriving in the microbial jungle, Nat Rev Microbiol, 8, 15, 10.1038/nrmicro2259
Holló, 2001, Influence of breed, slaughter weight and gender on chemical composition of beef. Part 1. Amino acid profile and biological value of proteins, Asian Australas. J. Anim. Sci., 14, 1555, 10.5713/ajas.2001.1555
Janssen, 2019
Janßen, 2018, Assertiveness of Lactobacillus sakei and Lactobacillus curvatus in a fermented sausage model, Int. J. Food Microbiol., 285, 188, 10.1016/j.ijfoodmicro.2018.04.030
Janßen, 2019, Monitoring of assertive Lactobacillus sakei and Lactobacillus curvatus strains using an industrial ring trial experiment, J. Appl. Microbiol., 126, 545, 10.1111/jam.14144
Johnston, 1965, Distribution and characteristics of the catalases of Lactobacillaceae, J. Bacteriol., 90, 347, 10.1128/jb.90.2.347-351.1965
Kahm, 2010, grofit: fitting biological growth curves with R, 33, 21
Kask, 2003, Physiological properties of Lactobacillus paracasei, L. danicus and L. curvatus strains isolated from Estonian semi-hard cheese, Food Res. Int., 36, 1037, 10.1016/j.foodres.2003.08.002
Knauf, 1992, Cloning, sequence, and phenotypic expression of katA, which encodes the catalase of Lactobacillus sake LTH677, Appl. Environ. Microbiol., 58, 832, 10.1128/aem.58.3.832-839.1992
2012
Lechardeur, 2011, Using heme as an energy boost for lactic acid bacteria, Curr. Opin. Biotechnol., 22, 143, 10.1016/j.copbio.2010.12.001
Leroy, 2005, Interactions of meat-associated bacteriocin-producing lactobacilli with Listeria innocua under stringent sausage fermentation conditions, J. Food Prot., 68, 2078, 10.4315/0362-028X-68.10.2078
MacLean, 2010, Skyline: an open source document editor for creating and analyzing targeted proteomics experiments, Bioinformatics, 26, 966, 10.1093/bioinformatics/btq054
McLeod, 2017, Effects of glucose availability in Lactobacillus sakei; metabolic change and regulation of the proteome and transcriptome, PLoS One, 12, 10.1371/journal.pone.0187542
Mishra, 2013, An anaerobic bacterium, Bacteroides thetaiotaomicron, uses a consortium of enzymes to scavenge hydrogen peroxide, Mol. Microbiol., 90, 1356, 10.1111/mmi.12438
Olsen, 2004, Trypsin cleaves exclusively C-terminal to arginine and lysine residues, Mol. Cell. Proteomics, 3, 608, 10.1074/mcp.T400003-MCP200
van Reenen, 1998, Isolation, purification and partial characterization of plantaricin 423, a bacteriocin produced by Lactobacillus plantarum, J. Appl. Microbiol., 84, 1131, 10.1046/j.1365-2672.1998.00451.x
Rimaux, 2011, The kinetics of the arginine deiminase pathway in the meat starter culture Lactobacillus sakei CTC 494 are pH-dependent, Food Microbiol., 28, 597, 10.1016/j.fm.2010.11.016
Rimaux, 2011, The pentose moiety of adenosine and inosine is an important energy source for the fermented-meat starter culture Lactobacillus sakei CTC 494, Appl. Environ. Microbiol., 77, 6539, 10.1128/AEM.00498-11
Rimaux, 2012, Expression of the arginine deiminase pathway genes in Lactobacillus sakei is strain dependent and is affected by the environmental pH, Appl. Environ. Microbiol., 78, 4874, 10.1128/AEM.07724-11
Schweigert, 1956, 30
Sharma, 2018, Panorama public: a public repository for quantitative data sets processed in skyline, Mol. Cell. Proteomics, 17, 1239, 10.1074/mcp.RA117.000543
Simpson, 2006, Fragmentation of protein using trypsin
Skaugen, 1994, In vivo conversion of L-serine to D-alanine in a ribosomally synthesized polypeptide, J. Biol. Chem., 269, 27183, 10.1016/S0021-9258(18)46966-9
de Souza Barbosa, 2015, Improving safety of salami by application of bacteriocins produced by an autochthonous Lactobacillus curvatus isolate, Food Microbiol., 46, 254, 10.1016/j.fm.2014.08.004
Verluyten, 2003, The curing agent sodium nitrite, used in the production of fermented sausages, is less inhibiting to the bacteriocin-producing meat starter culture Lactobacillus curvatus LTH 1174 under anaerobic conditions, Appl. Environ. Microbiol., 69, 3833, 10.1128/AEM.69.7.3833-3839.2003
Vogel, 1993, Molecular characterization of Lactobacillus curvatus and Lact. sake isolated from sauerkraut and their application in sausage fermentations, J Appl Bacteriol, 74, 295, 10.1111/j.1365-2672.1993.tb03029.x
Vogel, 1993, The competitive advantage of Lactobacillus curvatus LTH 1174 in sausage fermentations is caused by formation of curvacin A, Syst. Appl. Microbiol., 16, 457, 10.1016/S0723-2020(11)80280-8
Wang, 2018, Metabolomics analysis of Lactobacillus plantarum ATCC 14917 adhesion activity under initial acid and alkali stress, PLoS One, 13
Whittaker, 2012, Non-heme manganese catalase–the ‘other’ catalase, Arch. Biochem. Biophys., 525, 111, 10.1016/j.abb.2011.12.008
Zagorec, 2017, Lactobacillus sakei: a starter for sausage fermentation, a protective culture for meat products, Microorganisms, 5, 10.3390/microorganisms5030056
Zotta, 2017, Aerobic metabolism in the genus Lactobacillus: impact on stress response and potential applications in the food industry, J. Appl. Microbiol., 122, 857, 10.1111/jam.13399