Interrelation between grid systems and star polygons of muqarnas ground projection plans

Asli Agirbas1, Gulnur Yildiz2, Murat Sahin1
1Department of Architecture, Ozyegin University, Istanbul, Turkey
2Institute of Graduate Studies, Fatih Sultan Mehmet Vakif University, Istanbul, Turkey

Tóm tắt

Many muqarnas ground projection plans contain stars with unequal edge lengths in their compositions. In this study, the geometric reasons behind the unequality of star edge lengths in muqarnas ground projection plans have been searched. The main gates with complex-looking muqarnas belonging to the period of Suleiman the Magnificent (Kanuni Sultan Suleyman), designed by Architect Sinan in Istanbul, have been selected to examine. From the data obtained by 3D laser scanning and from the verification made, it has been confirmed that there are stars with unequal edge lengths in these muqarnas plans. From the geometrical examinations made according to the shape grammar theory, it was concluded that the muqarnas plans were created using spider-web grid and square grid layouts. It was also concluded that these grid types cause some of the star edge lengths to be unequal.

Từ khóa


Tài liệu tham khảo

Ozdural A. An analysis of the geometry of stalactites: Buruciye Medrese in Sivas. METU JFA. 1991;11:57–71. Garofalo V. A methodology for Studying Muqarnas: the extant examples in Palermo. Muqarnas. 2010;27:357–406. Bonner J. Islamic geometric patterns: their historical development and traditional methods of construction. New York: Springer; 2017. Broug E. Islamic geometric patterns. London: Thames and Hudson; 2008. Bourgoin J. Les Eléments de l’Art Arabe: Le Trait des Entrelacs. Paris: Firmin-Didot; 1879. Schneider G. Geometrische Bauornamente der Seldschuken in Kleinasien. Wiesbaden: Reichert; 1980. Critchlow K. Islamic patterns: an analytical and cosmological approach. London: Thames & Hudson; 1983. Hankin EH. The drawing of geometric patterns in saracenic art. New Delhi: The Director General Archaeological Survey of India; 1998. Cromwell PR. The search for quasi-periodicity in Islamic 5-fold ornament. Math Intell. 2009;31:36–56. https://doi.org/10.1007/s00283-008-9018-6. Bodner BL. From Sultaniyeh to Tashkent Scrolls: euclidean constructions of two nine- and twelve-pointed interlocking star polygon designs. Nexus Netw J. 2012;14(2):307–32. https://doi.org/10.1007/s00004-012-0111-y. Agirbas A. Algorithmic decomposition of geometric Islamic patterns: a case study with star polygon design in the tombstones of Ahlat. Nexus Netw J. 2020;22:113–37. https://doi.org/10.1007/s00004-018-0416-6. Redondo-Buitrago A, Huylebrouck D. Nonagons in the Hagia Sophia and the Selimiye Mosque. Nexus Netw J. 2015;17(1):157–81. https://doi.org/10.1007/s00004-015-0235-y. Uluengin FM. Mukarnas. Istanbul: Istanbul Fetih Cemiyeti; 2018. Necipoglu G. The Topkapi scroll: geometry and ornament in Islamic Architecture: Topkapi Palace Museum Library MS H. 1956. Santa Monica: The Getty Center for the History of Art and the Humanities; 1995. Ozdural A. Giyaseddin Jemshid el-Kashi and stalactites. METU JFA. 1990;10:31–49. Dold-Samplonius Y, Harmsen SL. The muqarnas plate found at Takht-i Sulayman: a new interpretation. Muqarnas Ann Vis Cult Islam World. 2005;22:85–94. Elkhateeb AA. Domes in the Islamic architecture of Cairo City: a mathematical approach. Nexus Netw J. 2012;14(1):151–76. https://doi.org/10.1007/978-3-0348-0393-9_12. Hamekasi N, Samavati FF, Nasri A. Interactive modeling of Muqarnas. In: Proceedings of computational aesthetics in graphics, visualization, and imaging. 2011. p. 129–36. Castera J-M. The Muqarnas dome of the hall of the two sisters in the Alhambra in Granada. In: Emmer M, editor. Mathematics and culture V. Berlin: Springer; 2007. p. 101–10. Kharazmi M, Sarhangi R. An analytical study of the methods of design and geometric constructions in architectural ornaments of the friday mosque of Forumad. Nexus Netw J. 2016;18:275–310. https://doi.org/10.1007/s00004-015-0278-0. Gherardini F, Leali F. A framework for 3D pattern analysis and reconstruction of Persian architectural elements. Nexus Netw J. 2016;18:133–67. https://doi.org/10.1007/s00004-015-0287-z. Kashef M. Bahri Mamluk muqarnas portals in Egypt: survey and analysis. Front Archit Res. 2017;6:487–503. https://doi.org/10.1016/j.foar.2017.09.004. Yaghan MAJ. The Muqarnas pre-designed erecting units: analysis, definition of the generic set of units, and a system of unit- creation as a new evolutionary step. Archit Sci Rev. 2001;44(3):297–318. https://doi.org/10.1080/00038628.2001.9697485. Takahashi S. Muqarnas: a three-dimensional decoration of Islamic Architecture. 2020. http://www.shiro1000.jp/muqarnas/default-.htm. Accessed 31 July 2020. Agirbas A, Yildiz G. Origin of irregular star polygons in ground projection plans of muqarnas. Nexus Netw J. 2021;23:507–48. https://doi.org/10.1007/s00004-020-00516-x. Hasol D. Ansiklopedik Mimarlik Sozlugu. Istanbul: Yem Yayınevi; 2002. Karademir M. The portal design of the mosques in Sinan’s period. Selcuk Univ J Stud Turcol. 2016;40:299–314. Gunay R. Sinan’in Istanbul’u (Birinci Baski). Istanbul: Yem Yayınevi; 2006. Eris I, Yuzeroglu U, Demir N. Atik Valide Sultan Kulliyesi 2011–2013 Yillari Restorasyonu ve Uygulamalari. Vakif Restorasyon Yilligi Dergisi. 2013;6:99–114. Seker BS. Mimar Sinan Camilerinin Statik ve Dinamik Yukler Etkisinde Davranislarinin Incelenmesi. Doktora Tezi, Karadeniz Teknik Universitesi, Fen Bilimleri Enstitusu, Trabzon; 2011. Stiny G. Shape: talking about seeing and doing. Cambridge: MIT Press; 2006. Knight T, Stiny G. Making grammars: from computing with shapes to computing with things. Des Stud. 2015;41:8–28. https://doi.org/10.1016/j.destud.2015.08.006. Odekan A. Sedat Cetintas. Restorasyon Yilligi Dergisi. 2015;11:88–93. Kuban D. Osmanli Mimarisi. Istanbul: Yem Yayınevi; 2007. Odekan A. Yazilari ve Roloveleriyle Sedat Cetintas. Istanbul: ITU Yayinlari; 2004.