Interpolation of harmonic functions based on Radon projections
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bojanov, B., Georgieva, I.: Interpolation by bivariate polynomials based on Radon projections. Studia Math. 162, 141–160 (2004)
Bojanov, B., Jayne, C.: Surface approximation by piecewise harmonic functions. In: Nikolov, G., Uluchev, R. (eds.) Constructive Theory of Functions, Sozopol 2010: In memory of Borislav Bojanov, pp. 46–52. Prof. Marin Drinov Academic Publishing House, Sofia (2012)
Bojanov, B., Petrova, G.: Numerical integration over a disc. A new Gaussian cubature formula. Numer. Math. 80, 39–59 (1998)
Bojanov, B., Petrova, G.: Uniqueness of the Gaussian cubature for a ball. J. Approx. Theory 104, 21–44 (2000)
Bojanov, B., Xu, Y.: Reconstruction of a bivariate polynomial from its Radon projections. SIAM J. Math. Anal. 37, 238–250 (2005)
Cavaretta, A.S., Goodman, T.N.T., Micchelli, C.A., Sharma, A.: Multivariate interpolation and the Radon transform, part III: Lagrange representation. In: Canadian Mathematical Society Conference Proceedings, pp. 37–50. American Mathematical Society, Providence (1982)
Cavaretta, A.S., Micchelli, C.A., Sharma, A.: Multivariate interpolation and the Radon transform. Part I. Math. Z. 174, 263–279 (1980)
Cavaretta, A.S., Micchelli, C.A., Sharma, A.: Multivariate interpolation and the Radon transform, part II. In: Quantitive Approximation, pp. 49–62. Academic Press, New York (1980)
Davison, M., Grunbaum, F.: Tomographic reconstruction with arbitrary directions. Comm. Pure Appl. Math. 34, 77–120 (1981)
Gasca, M., Sauer, T.: Polynomial interpolation in several variables. Adv. Comput. Math. 12, 377–410 (2000). doi: 10.1023/A:1018981505752
Georgieva, I., Hofreither, C., Koutschan, C., Pillwein, V., Thanatipanonda, T.: Harmonic interpolation based on Radon projections along the sides of regular polygons. Cent. Eur. J. Math. 11(4), 609–620 (2013). doi: 10.2478/s11533-012-0160-1 . Also available as Technical Report 2011–12 in the series of the DK Computational Mathematics Linz. https://www.dk-compmath.jku.at/publications/dk-reports/2011-10-20/view
Georgieva, I., Hofreither, C., Uluchev, R.: Interpolation of mixed type data by bivariate polynomials. In: Nikolov, G., Uluchev, R. (eds.) Constructive Theory of Functions, Sozopol 2010: In memory of Borislav Bojanov, pp. 93–107. Prof. Marin Drinov Academic Publishing House, Sofia (2012). Also available as Technical Report 2010–14 in the series of the DK Computational Mathematics Linz. https://www.dk-compmath.jku.at/publications/dk-reports/2010-12-10/view
Georgieva, I., Ismail, S.: On recovering of a bivariate polynomial from its Radon projections. In: Bojanov, B. (ed.) Constructive Theory of Functions, Varna 2005, pp. 127–134. Marin Drinov Academic Publishing House, Sofia (2006)
Georgieva, I., Uluchev, R.: Smoothing of Radon projections type of data by bivariate polynomials. J. Comput. Appl. Math. 215, 167–181 (2008). doi: 10.1016/j.cam.2007.04.002 . http://portal.acm.org/citation.cfm?id=1349899.1350213
Georgieva, I., Uluchev, R.: Surface reconstruction and Lagrange basis polynomials. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) Large-Scale Scientific Computing 2007, pp. 670–678. Springer, Berlin (2008). http://dx.doi.org/10.1007/978-3-540-78827-0_77
Georgieva, I., Uluchev, R.: On interpolation in the unit disk based on both Radon projections and function values. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) Large-Scale Scientific Computing 2009, pp. 747–755. Springer, Berlin (2010)
Hakopian, H.: Multivariate divided differences and multivariate interpolation of Lagrange and Hermite type. J. Approx. Theory 34, 286–305 (1982)
Hamaker, C., Solmon, D.: The angles between the null spaces of $$x$$ x -rays. J. Math. Anal. Appl. 62, 1–23 (1978)
Jain, A.K.: Fundamentals of Digital Image Processing. In: Kailath, T. (ed.) Prentice Hall Information and System Sciences Series, 5th edn. Prentice Hall, Englewood Cliffs (1989)
John, F.: Abhängigkeiten zwischen den Flächenintegralen einer stetigen Funktion. Math. Anal. 111, 541–559 (1935)
Logan, B., Shepp, L.: Optimal reconstruction of a function from its projections. Duke Math. J. 42, 645–659 (1975)
Marr, R.: On the reconstruction of a function on a circular domain from a sampling of its line integrals. J. Math. Anal. Appl. 45, 357–374 (1974)
Natterer, F.: The mathematics of computerized tomography. In: Classics in Applied Mathematics, vol. 32. SIAM, Philadelphia (2001)
Nikolov, G.: Cubature formulae for the disk using Radon projections. East J. Approx. 14, 401–410 (2008)
Radon, J.: Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Ber. Verch. Sächs. Akad. 69, 262–277 (1917)
Walsh, J.L.: The approximation of harmonic functions by harmonic polynomials and by harmonic rational functions. Bull. Am. Math. Soc 35(4), 499–544 (1929)
Zygmund, A.: Trigonometric Series. Cambridge Mathematical Library, 3rd edn. Cambridge University Press, Cambridge (2002)