Interpolation of harmonic functions based on Radon projections

Springer Science and Business Media LLC - Tập 127 Số 3 - Trang 423-445 - 2014
Irina Georgieva1, Clemens Hofreither2
1Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria
2Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bojanov, B., Georgieva, I.: Interpolation by bivariate polynomials based on Radon projections. Studia Math. 162, 141–160 (2004)

Bojanov, B., Jayne, C.: Surface approximation by piecewise harmonic functions. In: Nikolov, G., Uluchev, R. (eds.) Constructive Theory of Functions, Sozopol 2010: In memory of Borislav Bojanov, pp. 46–52. Prof. Marin Drinov Academic Publishing House, Sofia (2012)

Bojanov, B., Petrova, G.: Numerical integration over a disc. A new Gaussian cubature formula. Numer. Math. 80, 39–59 (1998)

Bojanov, B., Petrova, G.: Uniqueness of the Gaussian cubature for a ball. J. Approx. Theory 104, 21–44 (2000)

Bojanov, B., Xu, Y.: Reconstruction of a bivariate polynomial from its Radon projections. SIAM J. Math. Anal. 37, 238–250 (2005)

Cavaretta, A.S., Goodman, T.N.T., Micchelli, C.A., Sharma, A.: Multivariate interpolation and the Radon transform, part III: Lagrange representation. In: Canadian Mathematical Society Conference Proceedings, pp. 37–50. American Mathematical Society, Providence (1982)

Cavaretta, A.S., Micchelli, C.A., Sharma, A.: Multivariate interpolation and the Radon transform. Part I. Math. Z. 174, 263–279 (1980)

Cavaretta, A.S., Micchelli, C.A., Sharma, A.: Multivariate interpolation and the Radon transform, part II. In: Quantitive Approximation, pp. 49–62. Academic Press, New York (1980)

Davison, M., Grunbaum, F.: Tomographic reconstruction with arbitrary directions. Comm. Pure Appl. Math. 34, 77–120 (1981)

Gasca, M., Sauer, T.: Polynomial interpolation in several variables. Adv. Comput. Math. 12, 377–410 (2000). doi: 10.1023/A:1018981505752

Georgieva, I., Hofreither, C., Koutschan, C., Pillwein, V., Thanatipanonda, T.: Harmonic interpolation based on Radon projections along the sides of regular polygons. Cent. Eur. J. Math. 11(4), 609–620 (2013). doi: 10.2478/s11533-012-0160-1 . Also available as Technical Report 2011–12 in the series of the DK Computational Mathematics Linz. https://www.dk-compmath.jku.at/publications/dk-reports/2011-10-20/view

Georgieva, I., Hofreither, C., Uluchev, R.: Interpolation of mixed type data by bivariate polynomials. In: Nikolov, G., Uluchev, R. (eds.) Constructive Theory of Functions, Sozopol 2010: In memory of Borislav Bojanov, pp. 93–107. Prof. Marin Drinov Academic Publishing House, Sofia (2012). Also available as Technical Report 2010–14 in the series of the DK Computational Mathematics Linz. https://www.dk-compmath.jku.at/publications/dk-reports/2010-12-10/view

Georgieva, I., Ismail, S.: On recovering of a bivariate polynomial from its Radon projections. In: Bojanov, B. (ed.) Constructive Theory of Functions, Varna 2005, pp. 127–134. Marin Drinov Academic Publishing House, Sofia (2006)

Georgieva, I., Uluchev, R.: Smoothing of Radon projections type of data by bivariate polynomials. J. Comput. Appl. Math. 215, 167–181 (2008). doi: 10.1016/j.cam.2007.04.002 . http://portal.acm.org/citation.cfm?id=1349899.1350213

Georgieva, I., Uluchev, R.: Surface reconstruction and Lagrange basis polynomials. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) Large-Scale Scientific Computing 2007, pp. 670–678. Springer, Berlin (2008). http://dx.doi.org/10.1007/978-3-540-78827-0_77

Georgieva, I., Uluchev, R.: On interpolation in the unit disk based on both Radon projections and function values. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) Large-Scale Scientific Computing 2009, pp. 747–755. Springer, Berlin (2010)

Hakopian, H.: Multivariate divided differences and multivariate interpolation of Lagrange and Hermite type. J. Approx. Theory 34, 286–305 (1982)

Hamaker, C., Solmon, D.: The angles between the null spaces of $$x$$ x -rays. J. Math. Anal. Appl. 62, 1–23 (1978)

Jain, A.K.: Fundamentals of Digital Image Processing. In: Kailath, T. (ed.) Prentice Hall Information and System Sciences Series, 5th edn. Prentice Hall, Englewood Cliffs (1989)

John, F.: Abhängigkeiten zwischen den Flächenintegralen einer stetigen Funktion. Math. Anal. 111, 541–559 (1935)

Logan, B., Shepp, L.: Optimal reconstruction of a function from its projections. Duke Math. J. 42, 645–659 (1975)

Marr, R.: On the reconstruction of a function on a circular domain from a sampling of its line integrals. J. Math. Anal. Appl. 45, 357–374 (1974)

Natterer, F.: The mathematics of computerized tomography. In: Classics in Applied Mathematics, vol. 32. SIAM, Philadelphia (2001)

Nikolov, G.: Cubature formulae for the disk using Radon projections. East J. Approx. 14, 401–410 (2008)

Radon, J.: Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Ber. Verch. Sächs. Akad. 69, 262–277 (1917)

Walsh, J.L.: The approximation of harmonic functions by harmonic polynomials and by harmonic rational functions. Bull. Am. Math. Soc 35(4), 499–544 (1929)

Zygmund, A.: Trigonometric Series. Cambridge Mathematical Library, 3rd edn. Cambridge University Press, Cambridge (2002)