Interpolation error estimates in W 1,p for degenerate Q 1 isoparametric elements
Tóm tắt
Optimal order error estimates in H
1, for the Q
1 isoparametric interpolation were obtained in Acosta and Durán (SIAM J Numer Anal37, 18–36, 1999) for a very general class of degenerate convex quadrilateral elements. In this work we show that the same conlusions are valid in W
1,p
for 1≤ p < 3 and we give a counterexample for the case p ≥ 3, showing that the result cannot be generalized for more regular functions. Despite this fact, we show that optimal order error estimates are valid for any p ≥ 1, keeping the interior angles of the element bounded away from 0 and π, independently of the aspect ratio. We also show that the restriction on the maximum angle is sharp for p ≥ 3.
Tài liệu tham khảo
Acosta G., Durán R.G. (1999). The maximum angle condition for mixed and nonconforming elements: Application to the Stokes equations. SIAM J. Numer. Anal. 37, 18–36
Acosta G., Durán R.G. (2000). Error estimates for Q 1 isoparametric elements satisfying a weak angle condition. SIAM J. Numer. Anal. 38, 1073–1088
Acosta G., Durán R.G. (2004). An optimal Poincaré inequality in L 1 for convex domains. Proc. Am. Math. Soc. 132, 195–202
Apel, T.: Anisotropic finite elements: local estimates and applications. Advances in numerical mathematics. B. G. Teubner, Stuttgart, Leipzig (1999)
Babuška I., Aziz A.K. (1976). On the angle condition in the finite element method. SIAM J. Numer. Anal. 13, 214–226
Brenner S.C., Scott R.L.: The mathematical theory of finite element methods 2nd edn. Text in applied mathematics 15. Springer,Berlin Heidelberg Newyork (2002)
Ciarlet P.G., Raviart P.A. (1972). Interpolation theory over curved elements, with applications to finite elements methods. Comput. Methods Appl. Mech. Eng. 1, 217–249
Jamet P. (1976). Estimations d’erreur pour des éléments finis droits presque dégénérés. RAIRO Anal. Numér. 10, 46-61
Jamet P. (1977). Estimation of the interpolation error for quadrilateral finite elements which can degenerate into triangles. SIAM J. Numer. Anal. 14, 925–930
Ming P., Shi Z.C. (2002). Quadrilateral mesh revisited. Comput. Methods Appl. Mech. Eng. 191, 5671–5682
Payne L. E., Weinberger H.F. (1960). An optimal Poincaré inequality for convex domains. Arch. Rat. Mech. Anal. 5, 286–292
Verfürth R. (1999). Error estimates for some quasi-interpolation operator. AN Math. Model. Numer. Anal. 33, 695–713
Zenisek A., Vanmaele M. (1995). The interpolation theorem for narrow quadrilateral isoparametric finite elements. Numer. Math. 72, 123–141