Internal validation and improvement of mitochondrial genome sequencing using the Precision ID mtDNA Whole Genome Panel
Tóm tắt
With the recent advances in next-generation sequencing (NGS), mitochondrial whole-genome sequencing has begun to be applied to the field of the forensic biology as an alternative to the traditional Sanger-type sequencing (STS). However, experimental workflows, commercial solutions, and output data analysis must be strictly validated before being implemented into the forensic laboratory. In this study, we performed an internal validation for an NGS-based typing of the entire mitochondrial genome using the Precision ID mtDNA Whole Genome Panel (Thermo Fisher Scientific) on the Ion S5 sequencer (Thermo Fisher Scientific). Concordance, repeatability, reproducibility, sensitivity, and heteroplasmy detection analyses were assessed using the 2800 M and 9947A standard control DNA as well as typical casework specimens, and results were compared with conventional Sanger sequencing and another NGS sequencer in a different laboratory. We discuss the strengths and limitations of this approach, highlighting some issues regarding noise thresholds and heteroplasmy detection, and suggesting solutions to mitigate these effects and improve overall data interpretation. Results confirmed that the Precision ID Whole mtDNA Genome Panel is highly reproducible and sensitive, yielding useful full mitochondrial DNA sequences also from challenging DNA specimens, thus providing further support for its use in forensic practice.
Tài liệu tham khảo
Amorim A, Fernandes T, Taveira N (2019) Mitochondrial DNA in human identification: a review. PeerJ 7:e7314. https://doi.org/10.7717/peerj.7314
Horai S, Hayasaka K (1990) Intraspecific nucleotide sequence differences in the major noncoding region of human mitochondrial DNA. Am J Hum Genet 46:828–842
Parson W, Bandelt HJ (2007) Extended guidelines for mtDNA typing of population data in forensic science. Forensic Sci Int Genet 1:13–19. https://doi.org/10.1016/j.fsigen.2006.11.003
Parson W, Gusmão L, Hares DR et al (2014) DNA Commission of the International Society for Forensic Genetics: Revised and extended guidelines for mitochondrial DNA typing. Forensic Sci Int Genet 13:134–142. https://doi.org/10.1016/j.fsigen.2014.07.010
Parson W, Strobl C, Huber G et al (2013) Evaluation of next generation mtGenome sequencing using the Ion Torrent Personal Genome Machine (PGM). Forensic Sci Int Genet 7:543–549. https://doi.org/10.1016/j.fsigen.2013.06.003
Templeton JEL, Brotherton PM, Llamas B et al (2013) DNA capture and next-generation sequencing can recover whole mitochondrial genomes from highly degraded samples for human identification. Investig Genet 4:26. https://doi.org/10.1186/2041-2223-4-26
Just RS, Irwin JA, Parson W (2015) Mitochondrial DNA heteroplasmy in the emerging field of massively parallel sequencing. Forensic Sci Int Genet 18:131–139. https://doi.org/10.1016/j.fsigen.2015.05.003
Woerner AE, Ambers A, Wendt FR et al (2018) Evaluation of the precision ID mtDNA whole genome panel on two massively parallel sequencing systems. Forensic Sci Int Genet 36:213–224. https://doi.org/10.1016/j.fsigen.2018.07.015
Pereira V, Longobardi A, Børsting C (2018) Sequencing of mitochondrial genomes using the Precision ID mtDNA Whole Genome Panel. Electrophoresis 39:2766–2775. https://doi.org/10.1002/elps.201800088
Strobl C, Eduardoff M, Bus MM et al (2018) Evaluation of the precision ID whole MtDNA genome panel for forensic analyses. Forensic Sci Int Genet 35:21–25. https://doi.org/10.1016/j.fsigen.2018.03.013
Wu J, Mamidi T, Zhang L, Hicks C (2019) Integrating germline and somatic mutation information for the discovery of biomarkers in triple-negative breast cancer. Int J Environ Res Public Health 16:1055. https://doi.org/10.3390/ijerph16061055
Brandhagen MD, Just RS, Irwin JA (2020) Validation of NGS for mitochondrial DNA casework at the FBI Laboratory. Forensic Sci Int Genet 44:102151. https://doi.org/10.1016/j.fsigen.2019.102151
Scientific Working Group on DNA Analysis Methods (2016) Scientific working group on DNA analysis methods validation guidelines for DNA analysis methods SWGDAM validation guidelines for DNA analysis methods. https://docs.wixstatic.com/ugd/4344b0_813b241e8944497e99b9c45b163b76bd.pdf
European Network of Forensic Science Institutes (ENFSI) (2010) Recommended minimum criteria for the validation of various aspects of the DNA profiling Process. http://enfsi.eu/wp-content/uploads/2016/09/minimum_validation_guidelines_in_dna_profiling_-_v2010_0.pdf
De Fanti S, Vianello D, Giuliani C et al (2017) Massive parallel sequencing of human whole mitochondrial genomes with Ion Torrent technology: an optimized workflow for Anthropological and Population Genetics studies. Mitochondrial DNA Part A DNA Mapping, Seq Anal 28:843–850. https://doi.org/10.1080/24701394.2016.1197218
Llamas B, Valverde G, Fehren-Schmitz L et al (2017) From the field to the laboratory: Controlling DNA contamination in human ancient DNA research in the high-throughput sequencing era. STAR Sci Technol Archaeol Res 3:1–14. https://doi.org/10.1080/20548923.2016.1258824
Anslinger K, Bayer B, Rolf B et al (2005) Application of the BioRobot EZ1 in a forensic laboratory. Leg Med 7:164–168. https://doi.org/10.1016/j.legalmed.2005.01.002
Buś MM, Lembring M, Kjellström A et al (2019) Mitochondrial DNA analysis of a Viking age mass grave in Sweden. Forensic Sci Int Genet 42:268–274. https://doi.org/10.1016/j.fsigen.2019.06.002
Strobl C, Churchill Cihlar J, Lagacé R et al (2019) Evaluation of mitogenome sequence concordance, heteroplasmy detection, and haplogrouping in a worldwide lineage study using the Precision ID mtDNA Whole Genome Panel. Forensic Sci Int Genet 42:244–251. https://doi.org/10.1016/j.fsigen.2019.07.013
Andrews RM, Kubacka I, Chinnery PF et al (1999) Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 23:147–147. https://doi.org/10.1038/13779
Roth C, Parson W, Strobl C et al (2019) MVC: an integrated mitochondrial variant caller for forensics. Aust J Forensic Sci 51:S52–S55. https://doi.org/10.1080/00450618.2019.1569150
Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 147:195–197. https://doi.org/10.1016/0022-2836(81)90087-5
van Oven M, Kayser M (2009) Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum Mutat 30:E386–E394. https://doi.org/10.1002/humu.20921
Parson W, Dür A (2007) EMPOP-A forensic mtDNA database. Forensic Sci Int Genet 1:88–92. https://doi.org/10.1016/j.fsigen.2007.01.018
Robinson JT, Thorvaldsdóttir H, Winckler W et al (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26. https://doi.org/10.1038/nbt.1754
Kloss-Brandstätter A, Pacher D, Schönherr S et al (2011) HaploGrep: a fast and reliable algorithm for automatic classification of mitochondrial DNA haplogroups. Hum Mutat 32:25–32. https://doi.org/10.1002/humu.21382
Park G, Park JK, Shin SH et al (2017) Characterization of background noise in capture-based targeted sequencing data. Genome Biol 18:136. https://doi.org/10.1186/s13059-017-1275-2
Loman NJ, Misra RV, Dallman TJ et al (2012) Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol 30:434–439. https://doi.org/10.1038/nbt.2198
Bragg LM, Stone G, Butler MK et al (2013) Shining a light on dark sequencing: characterising errors in Ion Torrent PGM data. PLoS Comput Biol 9:e1003031. https://doi.org/10.1371/journal.pcbi.1003031
Riman S, Kiesler KM, Borsuk LA, Vallone PM (2017) Characterization of NIST human mitochondrial DNA SRM-2392 and SRM-2392-I standard reference materials by next generation sequencing. Forensic Sci Int Genet 29:181–192. https://doi.org/10.1016/j.fsigen.2017.04.005
Lee EY, Lee HY, Oh SY et al (2016) Massively parallel sequencing of the entire control region and targeted coding region SNPs of degraded mtDNA using a simplified library preparation method. Forensic Sci Int Genet 22:37–43. https://doi.org/10.1016/j.fsigen.2016.01.014
Li M, Schroeder R, Ko A, Stoneking M (2012) Fidelity of capture-enrichment for mtDNA genome sequencing: influence of NUMTs. Nucleic Acids Res 40:e137–e137. https://doi.org/10.1093/nar/gks499
Sturk-Andreaggi K, Parson W, Allen M, Marshall C (2020) Impact of the sequencing method on the detection and interpretation of mitochondrial DNA length heteroplasmy. Forensic Sci Int Genet 44:102205. https://doi.org/10.1016/j.fsigen.2019.102205
Cihlar JC, Amory C, Lagacé R et al (2020) Developmental validation of a MPS workflow with a PCR-based short amplicon whole mitochondrial genome panel. Genes (Basel) 11:1345. https://doi.org/10.3390/genes11111345
Cihlar JC, Peters D, Strobl C et al (2020) The lot-to-lot variability in the mitochondrial genome of controls. Forensic Sci Int Genet 47:102298. https://doi.org/10.1016/j.fsigen.2020.102298
