Internal validation and improvement of mitochondrial genome sequencing using the Precision ID mtDNA Whole Genome Panel

International Journal of Legal Medicine - Tập 135 - Trang 2295-2306 - 2021
Christian Faccinetto1, Daniele Sabbatini2, Patrizia Serventi1, Martina Rigato3, Cecilia Salvoro3, Gianluca Casamassima1, Gianluca Margiotta1, Sara De Fanti4,5, Stefania Sarno4, Nicola Staiti1, Donata Luiselli6, Alberto Marino1, Giovanni Vazza3
1Reparto Carabinieri Investigazioni Scientifiche Di Parma, Parma, Italy
2Department of Neurosciences DNS, University of Padova, Padova, Italy
3Department of Biology, University of Padova, Padova, Italy
4Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
5Interdepartmental Centre Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
6Department of Cultural Heritage, University of Bologna, Ravenna, Italy

Tóm tắt

With the recent advances in next-generation sequencing (NGS), mitochondrial whole-genome sequencing has begun to be applied to the field of the forensic biology as an alternative to the traditional Sanger-type sequencing (STS). However, experimental workflows, commercial solutions, and output data analysis must be strictly validated before being implemented into the forensic laboratory. In this study, we performed an internal validation for an NGS-based typing of the entire mitochondrial genome using the Precision ID mtDNA Whole Genome Panel (Thermo Fisher Scientific) on the Ion S5 sequencer (Thermo Fisher Scientific). Concordance, repeatability, reproducibility, sensitivity, and heteroplasmy detection analyses were assessed using the 2800 M and 9947A standard control DNA as well as typical casework specimens, and results were compared with conventional Sanger sequencing and another NGS sequencer in a different laboratory. We discuss the strengths and limitations of this approach, highlighting some issues regarding noise thresholds and heteroplasmy detection, and suggesting solutions to mitigate these effects and improve overall data interpretation. Results confirmed that the Precision ID Whole mtDNA Genome Panel is highly reproducible and sensitive, yielding useful full mitochondrial DNA sequences also from challenging DNA specimens, thus providing further support for its use in forensic practice.

Tài liệu tham khảo

Amorim A, Fernandes T, Taveira N (2019) Mitochondrial DNA in human identification: a review. PeerJ 7:e7314. https://doi.org/10.7717/peerj.7314 Horai S, Hayasaka K (1990) Intraspecific nucleotide sequence differences in the major noncoding region of human mitochondrial DNA. Am J Hum Genet 46:828–842 Parson W, Bandelt HJ (2007) Extended guidelines for mtDNA typing of population data in forensic science. Forensic Sci Int Genet 1:13–19. https://doi.org/10.1016/j.fsigen.2006.11.003 Parson W, Gusmão L, Hares DR et al (2014) DNA Commission of the International Society for Forensic Genetics: Revised and extended guidelines for mitochondrial DNA typing. Forensic Sci Int Genet 13:134–142. https://doi.org/10.1016/j.fsigen.2014.07.010 Parson W, Strobl C, Huber G et al (2013) Evaluation of next generation mtGenome sequencing using the Ion Torrent Personal Genome Machine (PGM). Forensic Sci Int Genet 7:543–549. https://doi.org/10.1016/j.fsigen.2013.06.003 Templeton JEL, Brotherton PM, Llamas B et al (2013) DNA capture and next-generation sequencing can recover whole mitochondrial genomes from highly degraded samples for human identification. Investig Genet 4:26. https://doi.org/10.1186/2041-2223-4-26 Just RS, Irwin JA, Parson W (2015) Mitochondrial DNA heteroplasmy in the emerging field of massively parallel sequencing. Forensic Sci Int Genet 18:131–139. https://doi.org/10.1016/j.fsigen.2015.05.003 Woerner AE, Ambers A, Wendt FR et al (2018) Evaluation of the precision ID mtDNA whole genome panel on two massively parallel sequencing systems. Forensic Sci Int Genet 36:213–224. https://doi.org/10.1016/j.fsigen.2018.07.015 Pereira V, Longobardi A, Børsting C (2018) Sequencing of mitochondrial genomes using the Precision ID mtDNA Whole Genome Panel. Electrophoresis 39:2766–2775. https://doi.org/10.1002/elps.201800088 Strobl C, Eduardoff M, Bus MM et al (2018) Evaluation of the precision ID whole MtDNA genome panel for forensic analyses. Forensic Sci Int Genet 35:21–25. https://doi.org/10.1016/j.fsigen.2018.03.013 Wu J, Mamidi T, Zhang L, Hicks C (2019) Integrating germline and somatic mutation information for the discovery of biomarkers in triple-negative breast cancer. Int J Environ Res Public Health 16:1055. https://doi.org/10.3390/ijerph16061055 Brandhagen MD, Just RS, Irwin JA (2020) Validation of NGS for mitochondrial DNA casework at the FBI Laboratory. Forensic Sci Int Genet 44:102151. https://doi.org/10.1016/j.fsigen.2019.102151 Scientific Working Group on DNA Analysis Methods (2016) Scientific working group on DNA analysis methods validation guidelines for DNA analysis methods SWGDAM validation guidelines for DNA analysis methods. https://docs.wixstatic.com/ugd/4344b0_813b241e8944497e99b9c45b163b76bd.pdf European Network of Forensic Science Institutes (ENFSI) (2010) Recommended minimum criteria for the validation of various aspects of the DNA profiling Process. http://enfsi.eu/wp-content/uploads/2016/09/minimum_validation_guidelines_in_dna_profiling_-_v2010_0.pdf De Fanti S, Vianello D, Giuliani C et al (2017) Massive parallel sequencing of human whole mitochondrial genomes with Ion Torrent technology: an optimized workflow for Anthropological and Population Genetics studies. Mitochondrial DNA Part A DNA Mapping, Seq Anal 28:843–850. https://doi.org/10.1080/24701394.2016.1197218 Llamas B, Valverde G, Fehren-Schmitz L et al (2017) From the field to the laboratory: Controlling DNA contamination in human ancient DNA research in the high-throughput sequencing era. STAR Sci Technol Archaeol Res 3:1–14. https://doi.org/10.1080/20548923.2016.1258824 Anslinger K, Bayer B, Rolf B et al (2005) Application of the BioRobot EZ1 in a forensic laboratory. Leg Med 7:164–168. https://doi.org/10.1016/j.legalmed.2005.01.002 Buś MM, Lembring M, Kjellström A et al (2019) Mitochondrial DNA analysis of a Viking age mass grave in Sweden. Forensic Sci Int Genet 42:268–274. https://doi.org/10.1016/j.fsigen.2019.06.002 Strobl C, Churchill Cihlar J, Lagacé R et al (2019) Evaluation of mitogenome sequence concordance, heteroplasmy detection, and haplogrouping in a worldwide lineage study using the Precision ID mtDNA Whole Genome Panel. Forensic Sci Int Genet 42:244–251. https://doi.org/10.1016/j.fsigen.2019.07.013 Andrews RM, Kubacka I, Chinnery PF et al (1999) Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 23:147–147. https://doi.org/10.1038/13779 Roth C, Parson W, Strobl C et al (2019) MVC: an integrated mitochondrial variant caller for forensics. Aust J Forensic Sci 51:S52–S55. https://doi.org/10.1080/00450618.2019.1569150 Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 147:195–197. https://doi.org/10.1016/0022-2836(81)90087-5 van Oven M, Kayser M (2009) Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum Mutat 30:E386–E394. https://doi.org/10.1002/humu.20921 Parson W, Dür A (2007) EMPOP-A forensic mtDNA database. Forensic Sci Int Genet 1:88–92. https://doi.org/10.1016/j.fsigen.2007.01.018 Robinson JT, Thorvaldsdóttir H, Winckler W et al (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26. https://doi.org/10.1038/nbt.1754 Kloss-Brandstätter A, Pacher D, Schönherr S et al (2011) HaploGrep: a fast and reliable algorithm for automatic classification of mitochondrial DNA haplogroups. Hum Mutat 32:25–32. https://doi.org/10.1002/humu.21382 Park G, Park JK, Shin SH et al (2017) Characterization of background noise in capture-based targeted sequencing data. Genome Biol 18:136. https://doi.org/10.1186/s13059-017-1275-2 Loman NJ, Misra RV, Dallman TJ et al (2012) Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol 30:434–439. https://doi.org/10.1038/nbt.2198 Bragg LM, Stone G, Butler MK et al (2013) Shining a light on dark sequencing: characterising errors in Ion Torrent PGM data. PLoS Comput Biol 9:e1003031. https://doi.org/10.1371/journal.pcbi.1003031 Riman S, Kiesler KM, Borsuk LA, Vallone PM (2017) Characterization of NIST human mitochondrial DNA SRM-2392 and SRM-2392-I standard reference materials by next generation sequencing. Forensic Sci Int Genet 29:181–192. https://doi.org/10.1016/j.fsigen.2017.04.005 Lee EY, Lee HY, Oh SY et al (2016) Massively parallel sequencing of the entire control region and targeted coding region SNPs of degraded mtDNA using a simplified library preparation method. Forensic Sci Int Genet 22:37–43. https://doi.org/10.1016/j.fsigen.2016.01.014 Li M, Schroeder R, Ko A, Stoneking M (2012) Fidelity of capture-enrichment for mtDNA genome sequencing: influence of NUMTs. Nucleic Acids Res 40:e137–e137. https://doi.org/10.1093/nar/gks499 Sturk-Andreaggi K, Parson W, Allen M, Marshall C (2020) Impact of the sequencing method on the detection and interpretation of mitochondrial DNA length heteroplasmy. Forensic Sci Int Genet 44:102205. https://doi.org/10.1016/j.fsigen.2019.102205 Cihlar JC, Amory C, Lagacé R et al (2020) Developmental validation of a MPS workflow with a PCR-based short amplicon whole mitochondrial genome panel. Genes (Basel) 11:1345. https://doi.org/10.3390/genes11111345 Cihlar JC, Peters D, Strobl C et al (2020) The lot-to-lot variability in the mitochondrial genome of controls. Forensic Sci Int Genet 47:102298. https://doi.org/10.1016/j.fsigen.2020.102298