Internal combustion engines water injection fed by Exhaust Water Recirculation (EWR): a feasibility analysis

A. Vaudrey1, J. Cuisano2
1ECAM Lyon, LabECAM, Univ. Lyon, Lyon, France
2Pontificia Universidad Católica del Perú, Lima, Peru

Tóm tắt

Water injection is one of the ways available to mitigate internal combustion engine propelled vehicles pollutions. Its practical use, yet, may require the presence of an additional liquid water tank on board, which implies new costs and constraints. In the present paper, we try to figure out whether such a tank is really needed or not. Ambient humidity, fuel chemical composition, Water–Fuel Ratio and water recycling effectiveness are combined into a water balance model of concerned engines. The obtained results are really encouraging: considering the effectivenesses of existing water recycling membranes, almost all water needs of water injection can be satisfied, without any water tank, and for most of liquid and gaseous fuels. The Exhaust Water Recirculation system presented in this paper is, thus, probably one of the key components water injection will need to be used more widely on future vehicles.

Từ khóa


Tài liệu tham khảo

ASHRAE Handbook: Fundamentals. American Society of Heating, Refrigerating and Air-Conditioning Engineers (2001). https://en.wikipedia.org/wiki/ASHRAE_Handbook Andrews, C.C., Cisar, A.J., Salinas, C., Murphy, O.J., John Appleby, A..: Water sources for automotive devices. United States Patent US6804949 B2 (2004). https://www.google.fr/patents/US6804949 Arruga, H., Scholl, F., Kettner, M., Amad, O.I., Klaissle, M., Giménez, B.: Effect of intake manifold water injection on a natural gas spark ignition engine: an experimental study. IOP Conf. Ser. Mater. Sci. Eng. 257, 012029 (2017). https://doi.org/10.1088/1757-899X/257/1/012029 Bedford, F., Rutland, C., Dittrich, P., Raab, A., Wirbeleit, F.: Effects of direct water injection on DI diesel engine combustion. SAE technical paper 2000-01-2938 (2000). https://doi.org/10.4271/2000-01-2938 Berkeley, J.: The death of the internal combustion engine. The Economist (2017). https://www.economist.com/news/leaders/21726071-it-had-good-run-end-sight-machine-changed-world-death. Accessed 7 Jan 2020 Boretti, A.: Water injection in directly injected turbocharged spark ignition engines. Appl. Therm. Eng. 52(1), 62–68 (2013). https://doi.org/10.1016/j.applthermaleng.2012.11.016 Brun, R.J., Lowell Olsen, H., Miller, C.D.: End zone water injection as a means of suppressing knock in a spark-ignition engine. Technical report, National Advisory Committee for Aeronautics, Report No. E4I27, Aircraft Engine Research Laboratory, Cleveland, Ohio (1944) Brusca, S., Lanzafame, R.: Water injection in IC-SI engines to control detonation and to reduce pollutant emissions. SAE technical paper 2003-01-1912 (2003). https://doi.org/10.4271/2003-01-1912 Challen, B., Baranescu, R.: Diesel Engine Reference Book. Butterworth-Heinemann, Oxford (1999) Chen, R.H., Chiang, L.B., Wu, M.H., Lin, T.H.: Gasoline displacement and NOx reduction in an SI engine by aqueous alcohol injection. Fuel 89, 604–610 (2010). https://doi.org/10.1016/j.fuel.2009.07.015 Dryer, F.L.: Water addition to practical combustion systems—concepts and applications. Proc. Combust. Inst. 16(1), 279–295 (1977). https://doi.org/10.1016/S0082-0784(77)80332-9 Fernandez, L.P., San Román, T.G., Cossent, R., Domingo, C.M., Frias, P.: Assessment of the impact of plug-in electric vehicles on distribution networks. IEEE Trans. Power Syst. 26(1), 206–213 (2011). https://doi.org/10.1109/TPWRS.2010.2049133 Harrington, J.: Water addition to gasoline-effect on combustion, emissions, performance, and knock. SAE technical paper 820314 (1982). https://doi.org/10.4271/820314 Heywood, J.B.: Internal Combustion Engine Fundamentals. McGraw-Hill, New York (1988) Hoppe, F., Thewes, M., Baumgarten, H., Dohmen, J.: Water injection for gasoline engines: potentials, challenges, and solutions. Int. J. Engine Res. 17(1), 86–96 (2016). https://doi.org/10.1177/1468087415599867 Hugon, P.: Improvement in gas-engines. United States Patent 49346 (1865). https://www.google.fr/patents/US49346 Kim, J., Park, H., Bae, C., Choi, M., Kwak, Y.: Effects of water direct injection on the torque enhancement and fuel consumption reduction of a gasoline engine under high-load conditions. Int. J. Engine Res. 17(7), 795–808 (2016). https://doi.org/10.1177/1468087415613221 Korakianitis, T., Namasivayam, A.M., Crookes, R.J.: Natural-gas fueled spark-ignition (SI) and compression-ignition (CI) engine performance and emissions. Prog. Energy Combust. Sci. 37, 89–112 (2011). https://doi.org/10.1016/j.pecs.2010.04.002 Lanzafame, R.: Water injection effects in a single-cylinder CFR engine. SAE technical paper 1999-01-0568 (1999). https://doi.org/10.4271/1999-01-0568 Lappas, P.: Burn-rate and knock reduction in the spark ignition engine. Int. J. Energy Res. 20(9), 829–838 (1996). https://doi.org/10.1002/(SICI)1099-114X(199609)20:9<829::AID-ER203>3.0.CO;2-L Lindberg, J.E.: Engine combustion control system and method employing condensation of some exhaust gas. United States Patent US4503813 A (1983). https://www.google.fr/patents/US4503813 Melton Jr., R.B., Lestz, S.J., Quillian Jr., R.D., Rambie, E.J.: Direct water injection cooling for military engines and effects on the diesel cycle. Symp. Int. Combust. 15(1), 1389–1399 (1975). https://doi.org/10.1016/S0082-0784(75)80398-5 Mohan, A., Chidambaram, P.K., Suryan, A., Kim, H.D.: Thermo-fluid dynamic analysis of wet compression process. J. Mech. Sci. Technol. 30(12), 5473–5483 (2016). https://doi.org/10.1007/s12206-016-1115-4 Moses-Debusk, M., Bischoff, B., Hunter, J., Klett, J., Nafziger, E., Daw, S.: Ceramics for Environmental and Energy Applications II, Chap. 16: Understanding the Effect of Dynamic Feed Conditions on Water Recovery from IC Engine Exhaust by Capillary Condensation with Inorganic Membranes, pp. 143–151. Wiley, New York (2014) Offer, G.J., Howey, D., Contestabile, M., Clague, R., Brandon, N.P.: Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system. Energy Policy 38(1), 24–29 (2010). https://doi.org/10.1016/j.enpol.2009.08.040 Parley Wilson, J.: Effects of water injection and increased compression ratio in a gasoline spark ignition engine. MSc Thesis, University of Idaho (2011). http://digital.lib.uidaho.edu/cdm/ref/collection/IR/id/11 Peters, B., Stebar, R.: Water-gasoline fuels—their effect on spark ignition engine emissions and performance. SAE technical paper 760547 (1976). https://doi.org/10.4271/760547 Réguillet, V., Vaudrey, A., Moutin, S., Montaut, A., François, X., Baucour, P., Glises, R.: Definition of efficiency criteria for a fuel cell humidifier: application to a low power proton exchange membrane fuel cell system for negative surrounding temperatures. Appl. Therm. Eng. 58(1–2), 382–393 (2013). https://doi.org/10.1016/j.applthermaleng.2013.03.055 Rowe, M.R., Ladd, G.T.: Water injection for aircraft engines. SAE technical paper 460192 (1946). https://doi.org/10.4271/460192 Sarvi, A., Kilpinen, P., Zevenhoven, R.: Emissions from large-scale medium-speed diesel engines: 3. influence of direct water injection and common rail. Fuel Process. Technol. 90, 222–231 (2009). https://doi.org/10.1016/j.fuproc.2008.09.003 Sheehan, S.: BMW M4 GTS’s water injection system to feature on other cars from 2019 (2016). https://www.autocar.co.uk/car-news/industry/bmw-m4-gtss-water-injection-system-feature-other-cars-2019. Accessed 7 Jan 2020 Smil, V.: Energy Myths and Realities: Bringing Science to the Energy Policy Debate. AEI Press, Washington (2010) Smith, R.: Alpine & Renault: The Development of the Revolutionary Turbo F1 Car, 1968 to 1979. Veloce Publishing Ltd, Poundbury (2008) Snow, M.: Water injection system using water reclaimed from combustion exhaust. United States Patent US8820270 B2 (2013). https://www.google.fr/patents/US8820270 Subramanian, V., Mallikarjuna, J.M., Ramesh, A.: Effect of water injection and spark timing on the nitric oxide emission and combustion parameters of a hydrogen fuelled spark ignition engine. Int. J. Hydrog. Energy 32, 1159–1173 (2007). https://doi.org/10.1016/j.ijhydene.2006.07.022 Tauzia, X., Maiboom, A., Rahman Shah, S.: Experimental study of inlet manifold water injection on combustion and emissions of an automotive direct injection diesel engine. Energy 35(9), 3628–3639 (2010). https://doi.org/10.1016/j.energy.2010.05.007 Tsao, K., Wang, C., Miller, E.: Performance of gasoline-water fuel in a modified SI engine. SAE technical paper 841399 (1984). https://doi.org/10.4271/841399 Valera-Medina, A., Xiao, H., Owen-Jones, M., David, W.I.F., Bowen, P.J.: Ammonia for power. Prog. Energy Combust. Sci. 69, 63–102 (2018). https://doi.org/10.1016/j.pecs.2018.07.001 Vaudrey, A.: Thermodynamics of indirect water injection in internal combustion engines: analysis of the fresh mixture cooling effect. Int. J. Engine Res. (2018). https://doi.org/10.1177/1468087418766931 Verhelst, S., Wallner, T.: Hydrogen-fueled internal combustion engines. Prog. Energy Combust. Sci. 35, 490–527 (2009). https://doi.org/10.1016/j.pecs.2009.08.001 Wang, J.K., Li, J.L., Wu, M.H., Chen, R.H.: Reduction of nitric oxide emission from a SI engine by water injection at the intake runner. In: ASME 2009 International Mechanical Engineering Congress and Exposition, pp. 335–340. Lake Buena Vista, Florida, USA (2009). https://doi.org/10.1115/IMECE2009-12517