Interjoint dynamic interaction during constrained human quiet standing examined by induced acceleration analysis

Journal of Neurophysiology - Tập 111 Số 2 - Trang 313-322 - 2014
Shun Sasagawa1, Masahiro Shinya1,2, Kimitaka Nakazawa1
1Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan; and
2Japan Society for the Promotion of Science, Tokyo, Japan

Tóm tắt

Recent studies have demonstrated that human quiet standing is a multijoint movement, whereby the central nervous system (CNS) is required to deal with dynamic interactions among the joints to achieve optimal motor performance. The purpose of this study was to investigate how the CNS deals with such interjoint interaction during quiet standing by examining the relationship between the kinetics (torque) and kinematics (angular acceleration) within the multi-degree of freedom system. We modeled quiet standing as a double-link inverted pendulum involving both ankle and hip joints and conducted an “induced acceleration analysis.” We found that the net ankle and hip torques induced angular accelerations of comparable magnitudes to the ankle (3.8 ± 1.4°/s2 and 3.3 ± 1.2°/s2) and hip (9.1 ± 3.2°/s2 and 10.5 ± 3.5°/s2) joints, respectively. Angular accelerations induced by the net ankle and hip torques were modulated in a temporally antiphase pattern to one another in each of the two joints. These quantitative and temporal relationships allowed the angular accelerations induced by the two net torques to countercompensate one another, thereby substantially (∼70%) reducing the resultant angular accelerations of the individual joints. These results suggest that, by taking advantage of the interjoint interaction, the CNS prevents the net torques from producing large amplitudes of the resultant angular accelerations when combined with the kinematic effects of all other torques in the chain.

Từ khóa


Tài liệu tham khảo

10.1016/S0924-980X(97)96567-X

10.1007/s00422-005-0004-1

10.1007/s002210000603

10.1371/journal.pone.0006169

10.1152/jn.1996.76.1.492

10.1186/1743-0003-10-23

10.1016/j.humov.2007.11.005

10.1016/j.gaitpost.2004.05.005

10.1016/j.jbiomech.2011.06.013

10.1016/j.neulet.2004.11.071

10.1016/0013-4694(84)90172-X

10.1016/j.gaitpost.2006.05.009

10.1113/jphysiol.1992.sp019278

10.1152/jn.1999.82.5.2310

10.1016/j.jbiomech.2009.08.014

10.1007/s00419-010-0414-y

10.1016/j.gaitpost.2010.12.014

10.1007/s00419-011-0559-3

10.5772/22266

10.1152/jn.00674.2002

10.1152/jn.00348.2006

10.1097/JES.0b013e31818781cf

10.1016/j.jbiomech.2008.06.014

10.1007/BF00353957

Horak FB, 1996, Handbook of Physiology. Exercise: Regulation and Integration of Multiple Systems, 255

10.1152/jn.01142.2006

10.1152/jn.01272.2007

10.1109/10.362914

10.1088/1741-2560/2/3/S07

10.1007/s002210050506

10.2337/diacare.27.1.173

10.1113/jphysiol.2001.013077

10.1113/jphysiol.2002.025049

10.1113/jphysiol.2004.073437

10.1113/jphysiol.2004.076307

10.1152/jn.00730.2002

10.1152/jn.00221.2004

10.1152/jn.1999.82.3.1622

10.1007/s004220050587

10.1152/jn.01312.2007

Rozendaal LA, Proceedings of the XXIst Congress of the International Society of Biomechanics, Taipei, 2007, 27

10.1007/s00221-007-1145-3

10.1152/jn.1995.73.2.820

10.1016/j.neulet.2008.11.027

10.1007/s00221-009-1876-4

10.1007/s002210050738

10.1007/s002210000540

10.1038/nrn1427

10.1016/j.jtbi.2012.06.019

10.1038/nn963

10.1123/mcj.6.2.183

10.1109/TBME.2007.897831

10.1007/s004220050527

10.1007/s004220000196

10.1016/j.jneumeth.2005.01.003

10.1007/s00422-002-0382-6

10.1007/s00422-008-0240-2

Winter DA, 1990, Biomechanics and Motor Control of Human Movement

10.1152/jn.1998.80.3.1211

10.1126/science.7569931

Zajac FE, 1989, Exerc Sport Sci Rev, 17, 187

10.1016/S0966-6362(02)00068-1

10.1016/S0966-6362(02)00069-3

10.1016/j.gaitpost.2006.09.007