Interference with Activator Protein-2 transcription factors leads to induction of apoptosis and an increase in chemo- and radiation-sensitivity in breast cancer cells
Tóm tắt
Activator Protein-2 (AP-2) transcription factors are critically involved in a variety of fundamental cellular processes such as proliferation, differentiation and apoptosis and have also been implicated in carcinogenesis. Expression of the family members AP-2α and AP-2γ is particularly well documented in malignancies of the female breast. Despite increasing evaluation of single AP-2 isoforms in mammary tumors the functional role of concerted expression of multiple AP-2 isoforms in breast cancer remains to be elucidated. AP-2 proteins can form homo- or heterodimers, and there is growing evidence that the net effect whether a cell will proliferate, undergo apoptosis or differentiate is partly dependent on the balance between different AP-2 isoforms. We simultaneously interfered with all AP-2 isoforms expressed in ErbB-2-positive murine N202.1A breast cancer cells by conditionally over-expressing a dominant-negative AP-2 mutant. We show that interference with AP-2 protein function lead to reduced cell number, induced apoptosis and increased chemo- and radiation-sensitivity. Analysis of global gene expression changes upon interference with AP-2 proteins identified 139 modulated genes (90 up-regulated, 49 down-regulated) compared with control cells. Gene Ontology (GO) investigations for these genes revealed Cell Death and Cell Adhesion and Migration as the main functional categories including 25 and 12 genes, respectively. By using information obtained from Ingenuity Pathway Analysis Systems we were able to present proven or potential connections between AP-2 regulated genes involved in cell death and response to chemo- and radiation therapy, (i.e. Ctgf, Nrp1, Tnfaip3, Gsta3) and AP-2 and other main apoptosis players and to create a unique network. Expression of AP-2 transcription factors in breast cancer cells supports proliferation and contributes to chemo- and radiation-resistance of tumor cells by impairing the ability to induce apoptosis. Therefore, interference with AP-2 function could increase the sensitivity of tumor cells towards therapeutic intervention.
Tài liệu tham khảo
Eckert D, Buhl S, Weber S, Jager R, Schorle H: The AP-2 family of transcription factors. Genome Biol. 2005, 6 (13): 246-10.1186/gb-2005-6-13-246.
Bosher JM, Totty NF, Hsuan JJ, Williams T, Hurst HC: A family of AP-2 proteins regulates c-erbB-2 expression in mammary carcinoma. Oncogene. 1996, 13 (8): 1701-1707.
Pellikainen JM, Kosma VM: Activator protein-2 in carcinogenesis with a special reference to breast cancer--a mini review. Int J Cancer. 2007, 120 (10): 2061-2067. 10.1002/ijc.22648.
Friedrichs N, Jager R, Paggen E, Rudlowski C, Merkelbach-Bruse S, Schorle H, Buettner R: Distinct spatial expression patterns of AP-2alpha and AP-2gamma in non-neoplastic human breast and breast cancer. Mod Pathol. 2005, 18 (3): 431-438. 10.1038/modpathol.3800292.
Friedrichs N, Steiner S, Buettner R, Knoepfle G: Immunohistochemical expression patterns of AP2alpha and AP2gamma in the developing fetal human breast. Histopathology. 2007, 51 (6): 814-823. 10.1111/j.1365-2559.2007.02887.x.
Hilger-Eversheim K, Moser M, Schorle H, Buettner R: Regulatory roles of AP-2 transcription factors in vertebrate development, apoptosis and cell-cycle control. Gene. 2000, 260 (1-2): 1-12. 10.1016/S0378-1119(00)00454-6.
Wajapeyee N, Britto R, Ravishankar HM, Somasundaram K: Apoptosis induction by activator protein 2alpha involves transcriptional repression of Bcl-2. J Biol Chem. 2006, 281 (24): 16207-16219. 10.1074/jbc.M600539200.
Wajapeyee N, Raut CG, Somasundaram K: Activator protein 2alpha status determines the chemosensitivity of cancer cells: implications in cancer chemotherapy. Cancer Res. 2005, 65 (19): 8628-8634. 10.1158/0008-5472.CAN-05-1059.
Zeng YX, Somasundaram K, el-Deiry WS: AP2 inhibits cancer cell growth and activates p21WAF1/CIP1 expression. Nat Genet. 1997, 15 (1): 78-82. 10.1038/ng0197-78.
Gee JM, Robertson JF, Ellis IO, Nicholson RI, Hurst HC: Immunohistochemical analysis reveals a tumour suppressor-like role for the transcription factor AP-2 in invasive breast cancer. J Pathol. 1999, 189 (4): 514-520. 10.1002/(SICI)1096-9896(199912)189:4<514::AID-PATH463>3.0.CO;2-9.
Piao Z, Lee KS, Kim H, Perucho M, Malkhosyan S: Identification of novel deletion regions on chromosome arms 2q and 6p in breast carcinomas by amplotype analysis. Genes Chromosomes Cancer. 2001, 30 (2): 113-122. 10.1002/1098-2264(2000)9999:9999<::AID-GCC1069>3.0.CO;2-6.
Zhang J, Brewer S, Huang J, Williams T: Overexpression of transcription factor AP-2alpha suppresses mammary gland growth and morphogenesis. Dev Biol. 2003, 256 (1): 127-145. 10.1016/S0012-1606(02)00119-7.
McPherson LA, Loktev AV, Weigel RJ: Tumor suppressor activity of AP2alpha mediated through a direct interaction with p53. J Biol Chem. 2002, 277 (47): 45028-45033. 10.1074/jbc.M208924200.
Pellikainen MJ, Pekola TT, Ropponen KM, Kataja VV, Kellokoski JK, Eskelinen MJ, Kosma VM: p21WAF1 expression in invasive breast cancer and its association with p53, AP-2, cell proliferation, and prognosis. J Clin Pathol. 2003, 56 (3): 214-220. 10.1136/jcp.56.3.214.
Kallioniemi A, Kallioniemi OP, Piper J, Tanner M, Stokke T, Chen L, Smith HS, Pinkel D, Gray JW, Waldman FM: Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization. Proc Natl Acad Sci USA. 1994, 91 (6): 2156-2160. 10.1073/pnas.91.6.2156.
Tanner MM, Tirkkonen M, Kallioniemi A, Collins C, Stokke T, Karhu R, Kowbel D, Shadravan F, Hintz M, Kuo WL, et al: Increased copy number at 20q13 in breast cancer: defining the critical region and exclusion of candidate genes. Cancer Res. 1994, 54 (16): 4257-4260.
Gee JM, Eloranta JJ, Ibbitt JC, Robertson JF, Ellis IO, Williams T, Nicholson RI, Hurst HC: Overexpression of TFAP2C in invasive breast cancer correlates with a poorer response to anti-hormone therapy and reduced patient survival. J Pathol. 2009, 217 (1): 32-41. 10.1002/path.2430.
Guler G, Iliopoulos D, Guler N, Himmetoglu C, Hayran M, Huebner K: Wwox and Ap2gamma expression levels predict tamoxifen response. Clin Cancer Res. 2007, 13 (20): 6115-6121. 10.1158/1078-0432.CCR-07-1282.
Williamson JA, Bosher JM, Skinner A, Sheer D, Williams T, Hurst HC: Chromosomal mapping of the human and mouse homologues of two new members of the AP-2 family of transcription factors. Genomics. 1996, 35 (1): 262-264. 10.1006/geno.1996.0351.
Jager R, Werling U, Rimpf S, Jacob A, Schorle H: Transcription factor AP-2gamma stimulates proliferation and apoptosis and impairs differentiation in a transgenic model. Mol Cancer Res. 2003, 1 (12): 921-929.
Jager R, Friedrichs N, Heim I, Buttner R, Schorle H: Dual role of AP-2gamma in ErbB-2-induced mammary tumorigenesis. Breast Cancer Res Treat. 2005, 90 (3): 273-280. 10.1007/s10549-004-4815-x.
Richardson BD, Cheng YH, Langland RA, Handwerger S: Differential expression of AP-2gamma and AP-2alpha during human trophoblast differentiation. Life Sci. 2001, 69 (18): 2157-2165. 10.1016/S0024-3205(01)01299-1.
Bookout AL, Mangelsdorf DJ: Quantitative real-time PCR protocol for analysis of nuclear receptor signaling pathways. Nucl Recept Signal. 2003, 1: e012-10.1621/nrs.01012.
Chudin E, Kruglyak S, Baker SC, Oeser S, Barker D, McDaniel TK: A model of technical variation of microarray signals. J Comput Biol. 2006, 13 (4): 996-1003. 10.1089/cmb.2006.13.996.
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005, 102 (43): 15545-15550. 10.1073/pnas.0506580102.
Nanni P, Pupa SM, Nicoletti G, De Giovanni C, Landuzzi L, Rossi I, Astolfi A, Ricci C, De Vecchi R, Invernizzi AM, et al: p185(neu) protein is required for tumor and anchorage-independent growth, not for cell proliferation of transgenic mammary carcinoma. Int J Cancer. 2000, 87 (2): 186-194. 10.1002/1097-0215(20000715)87:2<186::AID-IJC5>3.0.CO;2-1.
Williams T, Tjian R: Characterization of a dimerization motif in AP-2 and its function in heterologous DNA-binding proteins. Science. 1991, 251 (4997): 1067-1071. 10.1126/science.1998122.
Zhu CH, Domann FE: Dominant negative interference of transcription factor AP-2 causes inhibition of ErbB-3 expression and suppresses malignant cell growth. Breast Cancer Res Treat. 2002, 71 (1): 47-57. 10.1023/A:1013378113916.
Hayes JD, Pulford DJ: The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol. 1995, 30 (6): 445-600. 10.3109/10409239509083491.
Petraccia L, Onori P, Sferra R, Lucchetta MC, Liberati G, Grassi M, Gaudio E: [MDR (multidrug resistance) in hepatocarcinoma clinical-therapeutic implications]. Clin Ter. 2003, 154 (5): 325-335.
Hishikawa K, Nakaki T, Fujii T: Connective tissue growth factor induces apoptosis via caspase 3 in cultured human aortic smooth muscle cells. Eur J Pharmacol. 2000, 392 (1-2): 19-22. 10.1016/S0014-2999(00)00115-1.
Hishikawa K, Oemar BS, Tanner FC, Nakaki T, Fujii T, Luscher TF: Overexpression of connective tissue growth factor gene induces apoptosis in human aortic smooth muscle cells. Circulation. 1999, 100 (20): 2108-2112.
Szeto CC, Chow KM, Lai KB, Szeto CY, Kwan BC, Li PK: Connective tissue growth factor is responsible for transforming growth factor-beta-induced peritoneal mesothelial cell apoptosis. Nephron Exp Nephrol. 2006, 103 (4): e166-174. 10.1159/000092907.
Jiang WG, Watkins G, Fodstad O, Douglas-Jones A, Mokbel K, Mansel RE: Differential expression of the CCN family members Cyr61, CTGF and Nov in human breast cancer. Endocr Relat Cancer. 2004, 11 (4): 781-791. 10.1677/erc.1.00825.
Castro-Rivera E, Ran S, Brekken RA, Minna JD: Semaphorin 3B inhibits the phosphatidylinositol 3-kinase/Akt pathway through neuropilin-1 in lung and breast cancer cells. Cancer Res. 2008, 68 (20): 8295-8303. 10.1158/0008-5472.CAN-07-6601.
Castro-Rivera E, Ran S, Thorpe P, Minna JD: Semaphorin 3B (SEMA3B) induces apoptosis in lung and breast cancer, whereas VEGF165 antagonizes this effect. Proc Natl Acad Sci USA. 2004, 101 (31): 11432-11437. 10.1073/pnas.0403969101.
Chien W, Yin D, Gui D, Mori A, Frank JM, Said J, Kusuanco D, Marchevsky A, McKenna R, Koeffler HP: Suppression of cell proliferation and signaling transduction by connective tissue growth factor in non-small cell lung cancer cells. Mol Cancer Res. 2006, 4 (8): 591-598. 10.1158/1541-7786.MCR-06-0029.
The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2407/10/192/prepub