Interfacial Microstructure and Growth Kinetics of Intermetallic Compound Layers in Sn-4 wt.%Ag/Cu-X (X = Zn, Ag, Sn) Couples

Journal of Electronic Materials - Tập 40 - Trang 1542-1548 - 2011
H. F. Zou1,2, Q. K. Zhang1, Z. F. Zhang1
1Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, People’s Republic of China
2Capital Aerospace Machinery Company, Beijing, People’s Republic of China

Tóm tắt

In the current study, the interfacial microstructures of Sn-Ag/Cu-X alloy (X = Ag, Sn or Zn) couples were investigated. The experimental results confirm that addition of Ag or Zn can effectively suppress the growth of the Cu3Sn layer, while addition of Sn accelerates the growth of the Cu3Sn layer. Meanwhile, the formation of voids is effectively suppressed by alloying the Cu substrate. The disappearance of voids and the absence of the Cu3Sn layer were well explained in terms of the phase diagram and the diffusion flux: the Cu3Sn phase is a nonequilibrium phase based on the Sn-Cu-Zn ternary phase diagram, since a high-Zn region is formed at the Cu6Sn5/Cu-Zn alloy interface; in addition, the high Sn diffusion flux in the Cu6Sn5 can suppress the growth of Cu3Sn and the formation of voids.

Tài liệu tham khảo

T. Laurila, V. Vuorinen, and J.K. Kivilahti, Mater. Sci. Eng. R 49, 1 (2005). P.L. Liu and J.K. Shang, Scripta Mater. 44, 1019 (2001). H.F. Zou, Q.K. Zhang, and Z.F. Zhang, Scripta Mater. 61, 308 (2009). C.Y. Oh, H.-R. Roh, Y.M. Kim, J.S. Lee, H.Y. Cho, and Y.-H. Kim, J. Mater. Res. 24, 297 (2009). A. Sharif and Y.C. Chan, J. Electron. Mater. 35, 1812 (2006). Q.S. Zhu, Z.F. Zhang, J.K. Shang, and Z.G. Wang, Mater. Sci. Eng. A 435–436, 588 (2006). Z. Chen, M. He, A. Kumar, and G.J. Qi, J. Electron. Mater. 36, 17 (2007). C.-Y. Yu, K.-J. Wang, and J.-G. Duh, J. Electron. Mater. 39, 230 (2010). I. Kaban, K. Khalouk, M. Kohler, W. Hoyer, and J.G. Gasser, J. Electron. Mater. 39, 70 (2010). Q.K. Zhang, Q.S. Zhu, H.F. Zou, and Z.F. Zhang, Mater. Sci. Eng. A 527, 1367 (2010). T. Laurila, V. Vuorinen, and M. Paulasto-Kröckel, Mater. Sci. Eng. R 68, 1 (2010). J. Yu and J.Y. Kim, Acta Mater. 56, 5514 (2008). C.Y. Chou and S.W. Chen, Acta Mater. 54, 2393 (2006). K.N. Tu, Solder Joint Technology Materials, Properties, and Reliability (New York: Springer, 2007). H.C. Bhedwar, K.K. Ray, S.D. Kulkarni, and V. Balasubramanian, Scripta Metall. 6, 919 (1972). M. Oh (Doctoral Dissertation, Leigh University, 1994). A. Paul (Doctoral Dissertation, Technical University of Eindhoven, 2004). A.M. Gusak and K.N. Tu, Phys. Rev. B 66, 115403 (2002). N.L. Peterson and S.J. Rothman, Phys. Rev. B 2, 1540 (1970). R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleioser, and K.K. Kelley, Selected Values of Thermodynamic Properties of Binary Alloys (Metals Park, OH: ASM International, 1973). A. Kuper, H. Letaw, J.L. Slifkin, E. Sonder, and C.T. Tomizuka, Phys. Rev. 96, 1224 (1954).