Interface Engineering for Highly Efficient and Stable Planar p‐i‐n Perovskite Solar Cells

Advanced Energy Materials - Tập 8 Số 5 - 2018
Yang Bai1, Xiangyue Meng1,2, Shihe Yang1,3
1Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
2State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
3Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055 China

Tóm tắt

Abstract

Organic‐inorganic halide perovskite materials have become a shining star in the photovoltaic field due to their unique properties, such as high absorption coefficient, optimal bandgap, and high defect tolerance, which also lead to the breathtaking increase in power conversion efficiency from 3.8% to over 22% in just seven years. Although the highest efficiency was obtained from the TiO2 mesoporous structure, there are increasing studies focusing on the planar structure device due to its processibility for large‐scale production. In particular, the planar p‐i‐n structure has attracted increasing attention on account of its tremendous advantages in, among other things, eliminating hysteresis alongside a competitive certified efficiency of over 20%. Crucial for the device performance enhancement has been the interface engineering for the past few years, especially for such planar p‐i‐n devices. The interface engineering aims to optimize device properties, such as charge transfer, defect passivation, band alignment, etc. Herein, recent progress on the interface engineering of planar p‐i‐n structure devices is reviewed. This review is mainly focused on the interface design between each layer in p‐i‐n structure devices, as well as grain boundaries, which are the interfaces between polycrystalline perovskite domains. Promising research directions are also suggested for further improvements.

Từ khóa


Tài liệu tham khảo

10.1038/nphoton.2014.134

10.1039/C4EE00942H

10.1002/smll.201402767

10.1039/C4CS00458B

10.1126/science.aan2301

10.1039/c1nr10867k

10.1021/ic401215x

10.1038/nphys3357

10.1126/science.1243982

10.1021/ja809598r

10.1038/srep00591

10.1038/nature12509

10.1021/acs.accounts.5b00404

10.1002/aenm.201600457

10.1038/nmat4150

10.1021/acs.jpclett.5b02229

10.1039/C5EE00120J

10.1016/j.nanoen.2016.10.026

10.1016/j.nanoen.2017.02.019

10.1038/ncomms8081

10.1038/ncomms6784

10.1038/ncomms3761

10.1002/aenm.201501453

10.1002/adma.201301327

10.1021/ja307789s

10.1002/aenm.201600474

10.1002/anie.201604399

10.1016/j.nanoen.2016.04.057

10.1002/cssc.201402032

10.1039/C4TA05309E

10.1002/adfm.201505215

10.1021/acsenergylett.6b00657

10.1002/anie.201405176

10.1002/adfm.201604944

10.1021/acsnano.5b07043

10.1126/science.aad1015

10.1038/nenergy.2016.148

10.1002/adma.201404189

10.1002/adma.201500523

10.1002/aenm.201701038

10.1002/adma.201603850

10.1039/C4TA04272G

10.1002/smll.201501330

10.1039/C4NR03181D

10.1016/j.nanoen.2015.04.029

10.1038/ncomms8747

10.1039/C5EE01179E

10.1038/nenergy.2017.102

10.1021/acsami.5b03525

10.1186/s11671-015-1020-2

10.1039/C4EE01216J

Wang D., 2016, 2016 IEEE 43rd Photovoltaic Specialists Conf. (PVSC), 1670, 10.1109/PVSC.2016.7749907

10.1039/C6EE01987K

10.1039/C5MH00026B

10.1021/am506785k

10.1039/C5TA10696F

10.1021/acsami.7b00902

10.1063/1.4896779

10.1039/C7TA01764B

10.1038/nature12340

10.1038/nature14133

10.1038/nature12509

10.1126/science.1228604

10.1126/science.1254050

10.1038/nphoton.2013.342

10.1021/jacs.5b01994

10.1038/nenergy.2016.177

10.1021/jp509183k

10.1038/ncomms8410

10.1038/nnano.2015.230

10.1038/ncomms13938

10.1038/ncomms4586

10.1021/ja506624n

10.1038/ncomms4461

10.1016/B978-0-08-017747-2.50005-8

10.1002/smll.201403534

10.1039/C5TA04340A

10.1016/j.solmat.2014.10.036

10.1039/c4ee00168k

10.1088/0957-4484/26/34/342001

10.1021/ja504632z

10.1016/j.nanoen.2014.11.014

10.1021/ja4132246

10.1021/acsenergylett.6b00657

10.1039/C5EE01720C

10.1021/nn505723h

10.1021/acsami.7b06638

10.1038/s41598-017-06245-5

10.1021/acs.jpcc.7b02411

10.1021/jp412627n

10.1039/C4EE02833C

10.1021/nl404252e

10.1021/jp5062144

10.1039/C6CP05851E

10.1039/C5TA02206A

10.1039/C6TA03119F

10.1021/jacs.5b08535

10.1002/cssc.201600949

10.1021/acs.jpclett.7b00415

10.1021/acs.jpclett.6b02193

10.1021/acs.jpclett.5b02273

10.1021/acs.jpclett.6b00215

10.1021/ja512833n

10.1021/nl500627x

10.1021/acs.accounts.5b00420

10.1038/ncomms8497

10.1039/C5EE01265A

10.1021/jacs.5b03615

10.1021/jz500113x

10.1039/C4EE03664F

10.1002/aenm.201500279

10.1038/ncomms11683

10.1002/aenm.201602922

10.1038/nphoton.2013.341

10.1038/nphoton.2014.284

10.1039/C5TA07008B

10.1002/aenm.201602333

10.1038/ncomms6784

10.1038/nphoton.2016.3

10.1038/ncomms8081

10.1002/admi.201600484

10.1021/jacs.7b01439

10.1002/aenm.201601307

10.1021/acs.accounts.5b00420

10.1002/aenm.201602922

10.1038/nenergy.2015.1

10.1002/adma.201600969

10.1002/adma.201604545

10.1039/C6QM00309E

10.1039/C4EE03824J

10.1039/C5EE02194D

10.1039/C4NR03366C

10.1126/science.aad1015

10.1039/C6EE00612D

10.1007/s12274-014-0534-8

10.1063/1.4938570

10.1002/aenm.201600285

10.1002/adma.201600619

10.1039/C4EE01546K

10.1039/C5TA10574A

10.1039/C4EE01216J

10.1039/C4EE00233D

10.1002/adma.201402461

10.1002/adma.201400231

10.1002/aenm.201401692

10.1063/1.4928535

10.1002/aenm.201501606

10.1016/j.nanoen.2016.08.048

10.1021/cm502864s

10.1039/C4NR05975A

10.1039/C4NR06240J

10.1002/adma.201603923

10.1039/C4TA05352D

10.1021/cm5037919

X.Meng C. H. Y.Ho Y.Bai S.Xiao T.Zhang C.Hu Y.Yang S. K.So S.Yang unpublished.

10.1016/j.solmat.2015.12.025

10.1021/acs.accounts.5b00455

10.1021/acsami.6b15673

10.1021/acs.jpcc.6b09412

10.1038/ncomms3885

10.1039/C7TA00434F

10.1126/science.aah5557

10.1039/C5EE03874J

10.1126/science.aai9081

10.1038/nature18306

10.1039/C6EE02941H

10.1002/adma.201104187

10.1039/C1CC15508C

10.1038/ncomms12806

10.1039/C6EE02980A