Interdisciplinary conversations in STEM education: can faculty understand each other better than their students do?
Tóm tắt
Rate of change concepts from calculus are presented and applied rather differently in college mathematics, physics, biology, and chemistry classes. This is not simply a matter of pedagogical style but reflects real cultural differences between these disciplines. We describe the efforts of our interdisciplinary collaboration to understand and reconcile these differences as we designed and discussed instructional videos for students. We summarize our conversations about terminology, notation, functions, rates, units, and sign conventions across the disciplines. We present some strategies that enabled us to communicate effectively, resolve confusions, and reach shared understandings. Our work has implications for others involved in collaborative interdisciplinary projects and for STEM educators.
In theory, there’s no difference between theory and practice. But in practice, there is.
– Benjamin Brewster. Also attributed to Yogi Berra.
Tài liệu tham khảo
Bain, K., & Towns, M. H. (2016). A review of research on the teaching and learning of chemical kinetics. Chemical Education Research and Practice, 17(2), 246–262.
Beal, J., Haddock-Angelli, T., Baldwin, G., Gershater, M., Dwijayanti, A., Storch, M., … with the iGEM Interlab Study Contributors (2018). Quantification of bacterial fluorescence using independent calibrants. PLoS One, 13(6), e0199432.
Bracken, L. J., & Oughton, E. A. (2006). “What do you mean?” the importance of language in developing interdisciplinary research. Transactions of the Institute of British Geographers, 31(3), 371–382.
Campbell, N. A., & Reece, J. B. (2005). Biology, (7th ed., p. 1144). New York City: Pearson.
Diaz Eaton, C., Highlander, H. C., Dahlquist, K. D., Ledder, G., LaMar, M. D., & Schugart, R. C. (2019). A “rule-of-five” framework for models and modeling to unify mathematicians and biologists and improve student learning. PRIMUS, 29(8), 799–829.
Donaldson, N. L., Felzian, L. K., Marvin, M. C., Cielocha, J. J., & Shapiro, T. (2019). Development of an interdisciplinary conceptual conservation of energy theme for use in undergraduate physics, chemistry, and biology courses. American Journal of Physics, 87(7), 527–534.
Dray, T., Gire, E., Kustusch, M. B., Manogue, C. A., & Roundy, D. (2019). Interpreting derivatives. PRIMUS, 29(8), 830–850.
Dray, T., & Manogue, C. (2003). Spherical coordinates. The College Mathematics Journal, 34(2), 168–169.
Duncker, E. (2001). Symbolic communication in multidisciplinary cooperations. Science, Technology & Human Values, 26(3), 349–386.
Galison, P. (2010). Trading with the enemy. In M. E. Gorman (Ed.), Trading zones and interactional expertise. Cambridge: MIT Press.
Herbert, S., & Pierce, R. (2011). What is rate? Does context or representation matter? Mathematics Education Research Journal, 23(4), 455–477.
Jones, S. R. (2017). An exploratory study on student understandings of derivatives in real-world, non-kinematics contexts. The Journal of Mathematical Behavior, 45, 95–110.
Jones, S. R. (2019). What education research related to calculus derivatives and integrals implies for chemistry instruction and learning. In M. H. Towns, K. Bain, & J.-M. G. Rodriguez (Eds.), It’s all just math: Research on students’ understanding of chemistry and mathematics, ACS symposium series (pp. 187–212). Washington D.C: American Chemical Society 2020.
Lamb, L. L., Bishop, J. P., Philipps, R. A., Schappelle, B. P., Whitacre, I., & Lewis, M. (2012). Developing symbol sense for the minus sign. Mathematics Teaching in the Middle School, 18(1), 5–9.
Lopez-Gay, R., Martinez Saez, J., & Martinez Torregrosa, J. (2015). Obstacles to mathematization in physics: The case of the differential. Science & Education, 24(5-6), 591–613.
Marsteller, P. (2010). Beyond BIO2010: Integrating biology and mathematics: Collaborations, challenges, and opportunities. CBE Life Sciences Education, 9, 141–142.
Redish, E. F., & Cooke, T. J. (2013). Learning each other’s ropes: Negotiating interdisciplinary authenticity. CBE Life Sciences Education, 12, 175–186.
Redish, E. F., & Kuo, E. (2015). Language of physics, language of math: Disciplinary culture and dynamic epistemology. Science & Education, 24, 561–590.
Rodriguez, J., Bain, K., Towns, M. H., Elmgren, M., & Ho, F. (2018). Covariational reasoning and mathematical narratives: Investigating students’ understanding of graphs in chemical kinetics. Chemical Education Research and Practice, 20, 107–119.
Seethaler, S., Burgasser, A., Bussey, T. J., Eggers, J., Lo, S. M., Rabin, J. M., … Weizman, H. (2020). A research-based checklist for development and critique of STEM instructional videos. Journal of College Science Teaching, 50(1), 30–36.
Seethaler, S., Czworkowski, J., & Wynn, L. (2018). Analyzing general chemistry texts’ treatment of rates of change concepts in reaction kinetics reveals missing conceptual links. Journal of Chemical Education, 95, 28–36.
Tai, M. M. (1994). A mathematical model for the determination of total area under glucose tolerance and other metabolic curves. Diabetes Care, 17(2), 152–154 See also the letters commenting on this article, and the author’s response, in Diabetes Care, 17(10), 1223–1227.
Thompson, P. W. (1994a). Images of rate and operational understanding of the fundamental theorem of calculus. Educational Studies in Mathematics, 26, 229–274.
Thompson, P. W. (1994b). Students, functions, and the undergraduate curriculum. In E. Dubinsky, A. H. Schoenfeld, & J. J. Kaput (Eds.), Research in Collegiate Mathematics Education 1 (issues in mathematics education Vol. 4), (pp. 21–44). Providence: AMS.
Thompson, P. W., Byerley, C., & Hatfield, N. (2013). A conceptual approach to calculus made possible by technology. Computers in the Schools, 30, 124–147.
Thompson, P. W., & Carlson, M. P. (2017). Variation, covariation, and functions: Foundational ways of thinking mathematically. In J. Cai (Ed.), Compendium for research in mathematics education, (pp. 421–456). Reston: NCTM.
Thompson, P. W., & Silverman, J. (2008). The concept of accumulation in calculus. In M. P. Carlson, & C. Rasmussen (Eds.), Making the connection: Research and teaching in undergraduate mathematics education, (pp. 43–52). Washington D.C: MAA.
Urry, L. A., Cain, M. L., Wasserman, S. A., Minorsky, P. V., Jackson, R. B., & Reece, J. B. (2014). Campbell biology in focus, (p. 836). New York City: Pearson.
Urry, L. A., Cain, M. L., Wasserman, S. A., Minorsky, P. V., & Reece, J. B. (2017). Campbell biology, (11th ed.). New York City: Pearson.
Urry, L.A., Cain, M.L, Wasserman, S.A., Minorsky, P.V., Jackson, R.B., & Reece, J.B. (2016). Campbell biology in focus 2nd edition,. New York City: Pearson.
Urso, R., Blardi, P., & Giorgi, G. (2002). A short introduction to pharmacokinetics. European Review for Medical and Pharmacological Sciences, 6, 33–44.
Wagner, J. F. (2018). Students’ obstacles to using Riemann sum interpretations of the definite integral. International Journal of Research in Undergraduate Mathematics Education, 4, 327–356.